Clinical Trials Logo

Delayed Cerebral Ischemia clinical trials

View clinical trials related to Delayed Cerebral Ischemia.

Filter by:

NCT ID: NCT06375889 Not yet recruiting - Clinical trials for Delayed Cerebral Ischemia

Platelet Activation in Delayed Cerebral Ischemia Secondary to Aneurysmal Subarachnoid Hemorrhage

APICRASH
Start date: May 13, 2024
Phase:
Study type: Observational

Aneurysmal subarachnoid haemorrhage is a complex pathology, the pathophysiology of which is still imperfectly understood. Its morbidity and mortality remain significant. In addition to the damage sustained by the brain in the immediate aftermath of aneurysmal rupture, which is inaccessible to life-saving treatment, a significant proportion of lesions occur at a distance from the initial event. Delayed cerebral ischaemia is one of the most morbid complications. It combines an inflammatory pattern with vascular dysfunction and neuronal excitotoxicity, leading to avoidable secondary neuronal loss. Vascular dysfunction is mediated by a loss of homeostasis between endothelial cells and figurative blood cells, including platelets. However, the interrelationship between these elements and the precise chronology of the dysfunction remain imperfectly described to date. It therefore seems appropriate to propose temporal monitoring of platelet activation kinetics over time, combined with concomitant collection of markers of endothelial damage, in order to clarify the vascular chronobiology of this pathology.

NCT ID: NCT06032533 Recruiting - Clinical trials for Subarachnoid Hemorrhage, Aneurysmal

Remote Ischemic Conditioning in Aneurysmal SAH

RESCUE-SAH
Start date: September 9, 2023
Phase: N/A
Study type: Interventional

The goal of this clinical trial is to examine the effect of limb occlusion therapy (remote ischemic conditioning, RIC) in subjects with aneurysmal subarachnoid hemorrhage. The main question it aims to answer is whether RIC can improve long-term recovery in participants with aneurysmal subarachnoid hemorrhage. Researchers will compare levels of functional independence in participants in the RIC-group to participants in the sham-group.

NCT ID: NCT05727657 Not yet recruiting - Clinical trials for Aneurysmal Subarachnoid Hemorrhage

Satralizumab in Aneurysmal Subarachnoid Hemorrhage

SASH
Start date: June 1, 2024
Phase: Early Phase 1
Study type: Interventional

In this study, satralizumab will be administered to see whether satralizumab is safe in patients with a burst brain aneurysm and if it may prevent strokes in patients with a burst brain aneurysm.

NCT ID: NCT05483751 Not yet recruiting - Clinical trials for Aneurysmal Subarachnoid Hemorrhage

Micro- and Macrovascular Parameters in Delayed Cerebral Ischemia

PDMMS
Start date: September 1, 2022
Phase:
Study type: Observational

Delayed cerebral ischemia (DCI) following aneurysmal subarachnoid hemorrhage (aSAH) results from a complex combination of macro- and microvascular processes. Besides cerebral vasospasms (CVS), DCI is caused by microthrombosis, neuroinflammation, microvascular dysfunction and cortical spreading depolarization.The glycocalyx plays an essential role in regulation of inflammation, oxidative stress and thrombosis, and could be involved in the pathophysiology of DCI. This study is a single-center prospective observational pilot (phase 1) and correlation (phase 2) study recruiting patients with an aneurysmal subarachnoid hemorrhage. The primary aim of the study is to evaluate the feasibility of performing measurements of the glycocalyx using side-stream darkfield (SDF) imaging sublingually and on the conjunctiva, and by sampling blood for analysis of markers of glycocalyx shedding. Moreover, the objective is to determine characteristic Doppler waveform morphologies in DCI patients by means of thorough analysis of transcranial Doppler (TCD) measurements. The secondary objective is to determine whether changes in glycocalyx integrity correlate with the development of DCI and whether these changes are associated with increased inflammation and with variation in TCD signals. Finally, changes in glycocalyx integrity, in TCD waveform morphology and in levels of inflammatory markers will be correlated with patient outcome at 6 weeks and 6 months after ictus.

NCT ID: NCT05131295 Completed - Clinical trials for Subarachnoid Hemorrhage

Dapsone Use in Patients With Aneurysmal Subarachnoid Hemorrhage.

Start date: September 5, 2007
Phase: Phase 3
Study type: Interventional

Dapsone is a drug that has been used clinically for several decades due to its anti-infective effect, making it widely available. Its neuroprotective effects have been found through its glutamate receptors antagonistic effect. Their main objective was to study the neuroprotective properties in patients with aneurysmal subarachnoid hemorrhage and high-risk factors for the development of cerebral vasospasm. Both the placebo and the dapsone used in this clinical trial were provided by the institution's neurochemistry laboratory.

NCT ID: NCT04998370 Recruiting - Clinical trials for Subarachnoid Hemorrhage, Aneurysmal

Cerebrospinal Fluid Hemoglobin to Monitor for Aneurysmal Subarachnoid Hemorrhage Related Secondary Brain Injury

HeMoVal
Start date: August 18, 2021
Phase:
Study type: Observational

The primary objective of this study is to evaluate the association between hemoglobin levels in the cerebrospinal fluid (CSF-Hb) and the occurrence of secondary brain injury in patients after aneurysmal subarachnoid hemorrhage (SAH-SBI) during the first 14 days after bleeding.

NCT ID: NCT04876638 Active, not recruiting - Clinical trials for Delayed Cerebral Ischemia

Minocycline for Aneurysmal Subarachnoid Hemorrhage (MASH)

Start date: July 1, 2019
Phase: Phase 2
Study type: Interventional

Previous work has demonstrated patients presenting with ruptured aneurysms that develop radiographic and clinical vasospasm have a higher permeability of the blood brain membrane. Matrix metalloproteinase 9 (MMP9) has been studied and recently implicated in both the pathogenesis of the blood brain barrier breakdown and vasogenic edema of ischemia strokes, and is suggested to be an accurate biomarker to predict the onset of cerebral vasospasm after subarachnoid hemorrhage. The therapeutic benefit of minocycline, an MMP9 inhibitor, has been investigated in ischemic stroke population, however its role in the treatment of cerebral vasospasm from ruptured aneurysms remains unknown. Our project has two main goals: to further confirm MMP9 has a reliable biomarker for the onset of cerebral vasospasm, and secondarily to investigate any possible therapeutic benefit that minocycline has in the vasospasm population. Vasospasm continues to be one of the major contributors of morbidity and mortality in the ruptured aneurysm population, and close monitoring of the neurologic exam during the 'vasospasm window' usually requires two weeks in the intensive care unit in most academic settings. As such, if we are better able to predict which patients are at risk of developing vasospasm based on MMP9 levels, we will be better able to anticipate the need for intervention and therefore mitigate the risk of vasospasm induced ischemic strokes, ultimately resulting in better outcomes in the ruptured aneurysm population. Further, if we are able to identify minocycline as a therapeutic agent to deter, or lessen the severity of vasospasm, we can possibly improve neurologic outcomes, decrease hospital stays, ultimately providing an improved and more cost-effective treatment strategy to our patients.

NCT ID: NCT04649398 Recruiting - Clinical trials for Subarachnoid Hemorrhage, Aneurysmal

Cerebral Nimodipine Concentrations Following Oral, Intra-venous and Intra-arterial Administration

Start date: November 25, 2020
Phase:
Study type: Observational

Nimodipine reduces the risk of poor outcome and delayed cerebral ischemia in patients suffering aneurysmal subarachnoid haemorrhage (SAH), but its mode of action is unknown. Its beneficial effect is assumed to be due its neuroprotective effects by reducing intracellular calcium and thereby cellular apoptosis, but higher concentrations might induce marked systemic hypotension, thereby inducing cerebral ischemia. Since several dosing regimes and routes of administration with inconclusive superiority exist and since the target site concentration of nimodipine - the unbound drug concentrations beyond the blood-brain barrier - is still not known, it is reasonable to measure nimodipine concentrations within the blood, cerebrospinal fluid (CSF) and interstitial brain tissue following oral, intra-venous and intra-arterial administration and correlate intra-arterial nimodipine administration to measures of cerebral metabolism and oxygenation. Therefore, the investigators propose to investigate in 30 patients suffering severe aneurysmal SAH and requiring cerebral microdialysis for cerebral neurochemical monitoring: - the ability of nimodipine to penetrate into the brain of neurointensive care patients by comparing exposure in brain, CSF and plasma, dependent on the route of administration (i.e. oral, intra-venous, and intra-arterial) and dosing intra-venously (0.5 - 2mg/h) - the impact of orally, intra-venously, and intra-arterially delivered nimodipine on cerebral metabolism, i.e. lactate/pyruvate ratio, pbtO2 and transcranial doppler flow velocities - the effect of oral and intra-venous nimodipine on systemic hemodynamic and cardiac parameters, using continuous Pulse Contour Cardiac Output (PiCCO) monitoring - the penetration properties of ethanol - as an excipient of nimodipine infusion - into the brain by comparing exposure in brain, CSF and plasma and quantifying the neuronal exposure to alcohol dependent on blood levels

NCT ID: NCT04507178 Recruiting - Clinical trials for Aneurysmal Subarachnoid Hemorrhage

Improving Outcome in Subarachnoid Hemorrhage wIth Nadroparine

ISCHEMIA
Start date: February 2, 2022
Phase: Phase 2
Study type: Interventional

Delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH) was long thought to be caused by subarachnoid blood-induced vasospasm. Experimental and clinical evidence suggest activation of several pathophysiological pathways, affecting the cerebral microcirculation. Recently, lower in-hospital mortality and less non-home discharge was reported in patients treated with therapeutic low-molecular weight heparin (LMWH), compared to patients with standard, prophylactic LMWH, pointing towards a potential benefit of higher doses of LMWH in the acute course after aSAH. Treatment with therapeutic LMWH might improve clinical outcome in endovascularly treated aSAH patients. The primary objective is to evaluate whether aSAH patients treated with therapeutic LMWH have a lower 30-day mortality rate compared to patients treated with prophylactic LMWH. Secondary objectives are to evaluate whether there are significant differences between patients treated with therapeutic and prophylactic LMWH in development of DCI, (hemorrhagic) complications during admission, hydrocephalus, non-home discharge location, quality of life, clinical outcome and cognitive functioning at three and six months, total health care costs. A single center, prospective, phase II randomized clinical trial in aneurysmal SAH patients ≥18 years old, in whom the causative aneurysm is treated with endovascular coiling less than 72 hours after initial SAH. Patients are randomized into 2 groups: (1) Therapeutic dose LMWH group: the standard prophylactic dose, administered upon hospital admission, will be replaced by nadroparin s.c. twice daily 5700 IE anti-Xa, starting within 24 hours after coiling and continued until 21 days after ictus of initial SAH. After 21 days, patients will continue with standard care prophylactic dose until discharge or when mobilized for more than 6 hours per day; (2) Control group: standard of care treatment with prophylactic dose of LMWH; nadroparin, s.c. once daily 2850 AxaIU until discharge or when mobilized for at least 6 hours a day. Primary outcome: 30-days' mortality. Secondary outcome: DCI, venous thrombo-embolic complications, occurrence of major and non-major bleeding, hemorrhagic complications after external ventricular/lumbar drain (EVD/ELD) placement and lumbar puncture (LP), other SAH-related complications, shunt-dependent hydrocephalus, discharge location, quality of life, total health care costs, cognitive functioning, clinical outcome.

NCT ID: NCT03318783 Completed - Clinical trials for Endothelial Dysfunction

Subarachnoid Hemorrhage and Soluble Epoxide Hydrolase Inhibition Trial

SUSHI
Start date: May 2, 2018
Phase: Phase 1/Phase 2
Study type: Interventional

Soluble epoxide hydrolase (sEH) is the metabolizing enzyme of epoxyeicosatrienoic acids (EETs), which may play a role in reducing neuroinflammation and regulating cerebral blood flow after subarachnoid hemorrhage (SAH). Hypotheses: Pharmacologic inhibition of the sEH enzyme is safe and will result in increased EETs availability in the blood and cerebrospinal fluid. This study is a double-blind, placebo-controlled, phase 1b randomized trial to evaluate the safety and efficacy of GSK2256294, a novel soluble epoxide hydrolase inhibitor in patients with aneurysmal SAH.