Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT00713375
Other study ID # 200803013R
Secondary ID
Status Recruiting
Phase N/A
First received July 9, 2008
Last updated July 10, 2008
Start date April 2008

Study information

Verified date July 2008
Source National Taiwan University Hospital
Contact Kuo-Chuan Wang, M.D.
Phone 886-2-23123456
Email wang081466@yahoo.com.tw
Is FDA regulated No
Health authority Taiwan: Department of Health
Study type Observational

Clinical Trial Summary

Dysregulation of autonomic nervous system is evident in patients with spontaneous intracranial hemorrhage. In this study, we utilize a non-invasive method (heart rate and blood pressure variability analysis to analyze the autonomic activities in this group of neurosurgical patients. Our aim is to determine the utility of this modality in risk stratification and outcome prediction in these patients.


Description:

Spontaneous intracranial hemorrhage is an absolute emergency in the field of neurosurgery, and it is also a devastating event that commonly results in major neurological disabilities or mortalities. Since disease severities and clinical courses vary in each patient, pathophysiological studies and prognostic factors are always worth research. From previous studies, we know that dysregulation of autonomic system plays an important role in intracranial hemorrhage. Hemorrhage itself is associated with sympathoexcitation, and patients who develop rebleeding or infarction complications are found to have an even higher degree of sympathetic storm. Therefore, the degree of autonomic activities seems to be a useful predictor.

Traditionally, sympathetic activities are measured by plasma catecholamine, while parasympathetic activities are hard to measure. In recent decades, the application of engineering in biological fields makes a great breakthrough. Waveform analysis of biological signals, such as electrocardiograms and arterial blood pressure, can indirectly determine autonomic activities. The variabilities of heart rate and blood pressure are subjected to frequency analysis. This generates several dominant frequency bands. High frequency bands (0.15-0.40Hz) are attributed to the effect of parasympathetic nervous system, while, the low frequency bands (0.04-0.15 Hz) are attributed to the effect of both sympathetic and parasympathetic nervous systems.

In this study, all patients with spontaneous intracranial bleedings undergo standard treatment and monitoring. This include electrocardiography, arterial blood pressure, and cerebral blood flow using transcranial Doppler sonography. For those who also have intracranial pressure monitoring, the intracranial pressure are also recorded. All these biological signals are exported for wave form analysis. We use frequency analysis, time-frequency analysis, and multiscale entropy to analyze these data. The results of analyses were also correlated to plasma catecholamine levels, proinflammatory markers, as well as the clinical variables. Our aim is to identify predictors of complications and grave outcomes from these biological signals. We also apply the results for future pathophysiological studies.


Recruitment information / eligibility

Status Recruiting
Enrollment 100
Est. completion date
Est. primary completion date April 2008
Accepts healthy volunteers No
Gender Both
Age group N/A and older
Eligibility Inclusion Criteria:

- Spontaneous intracranial hemorrhage with radiographical confirmation

Exclusion Criteria:

- Traumatic or undefined mechanisms for intracranial hemorrhage

- Pre-existing cardiac arrythmia

- Patients who had previous histories of intracranial, cardiac, hepatic, renal, or lung diseases

Study Design

Observational Model: Cohort, Time Perspective: Prospective


Locations

Country Name City State
Taiwan Department of Surgery, National Taiwan University Hospital Taipei
Taiwan Devision of Neurosurgery, National Taiwan University Hospital Taipei

Sponsors (1)

Lead Sponsor Collaborator
National Taiwan University Hospital

Country where clinical trial is conducted

Taiwan, 

Outcome

Type Measure Description Time frame Safety issue
Primary Activity of autonomic nervous activities determined by low frequency and high frequency energies in heart rate variability 14 days within initial ictus No
Secondary Presence of vasospasm or not 14 weeks No
See also
  Status Clinical Trial Phase
Active, not recruiting NCT06043167 - Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
Recruiting NCT04189471 - Recovery After Cerebral Hemorrhage
Completed NCT03281590 - Stroke and Cerebrovascular Diseases Registry
Completed NCT05131295 - Dapsone Use in Patients With Aneurysmal Subarachnoid Hemorrhage. Phase 3
Recruiting NCT02962349 - TRansfusion Strategies in Acute Brain INjured Patients N/A
Completed NCT02872857 - Subarachnoid Hemorrhage Recovery And Galantamine Phase 1/Phase 2
Terminated NCT02216513 - Deferoxamine to Prevent Delayed Cerebral Ischemia After Subarachnoid Hemorrhage Phase 0
Completed NCT03164434 - Influence of Drainage on EVD ICP-signal
Completed NCT02389634 - Identification of Novel Molecular Markers for Vasospasm
Completed NCT01077206 - High-dose Simvastatin for Aneurysmal Subarachnoid Haemorrhage Phase 2/Phase 3
Not yet recruiting NCT00905931 - Lycopene Following Aneurysmal Subarachnoid Haemorrhage Phase 2
Completed NCT01261091 - Early Tracheostomy in Ventilated Stroke Patients N/A
Completed NCT00962546 - Computed Tomographic (CT) Perfusion and CT Angiography as Screening Tools for Vasospasm Following Subarachnoid Hemorrhage N/A
Completed NCT00507104 - Pituitary Functions After Traumatic Brain Injury (TBI) and/or Subarachnoid Hemorrhage (SAH)
Completed NCT00071565 - Familial Intracranial Aneurysm Study II N/A
Recruiting NCT05113381 - The Purpose of This Study is to Determine Whether CerebroFlo™ EVD Catheter is Effective During the Treatment of IVH N/A
Completed NCT04052646 - Prehospital Deaths From Spontaneous Subarachnoid Haemorrhages
Recruiting NCT04548596 - NOninVasive Intracranial prEssure From Transcranial doppLer Ultrasound Development of a Comprehensive Database of Multimodality Monitoring Signals for Brain-Injured Patients
Recruiting NCT06033378 - Blood Pressure Treatment in ICU Patients With Subarachniodal Haemorrhage. N/A
Completed NCT04308577 - Diet Induced Ketosis for Brain Injury - A Feasibility Study N/A