Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT04135391
Other study ID # 201600576A3
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date August 1, 2016
Est. completion date June 30, 2018

Study information

Verified date July 2019
Source Chang Gung Memorial Hospital
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Effects of different exercise strategies on stroke patients remain unclear. Randomized controlled trial with concealed allocation has been performed from August 1, 2016 to June 30, 2018. We traced back 23 stroke patients, recruited during the above period, aged about 55 years with stroke duration > 24 months . Intervention: 13 of them underwent 36 times of moderate-intensity continuous training (MICT) at 60% of peak oxygen consumption (VO2peak) for 30 mins, and 10 had high-intensity interval training (HIIT) at alternative 80% and 40% VO2peak with the same training times and duration. Outcome measures: VO2peak, cardiac output (CO), bilateral frontal cortex blood volume (∆[THb]), oxyhemoglobin (∆[O2Hb]) and deoxyhemoglobin (∆[HHb]), ventilation efficiency, serum brain-derived neurotrophic factor (BDNF) levels, cognitive and life quality questionnaire, percentage of neuroblastic cell bearing neurites (% neurites), and cell fluorescent staining were examined before and after interventions.


Description:

Design The Institutional Review Board of a tertiary care hospital approved the study (IRB No. 201600576A3). A randomized controlled trial was performed in stroke patients with different exercise regimens and was blind to the assessors. The study was conducted from August 2016 to June 2018. Participants were randomly allocated to the MICT or HIIT groups using a computer-generated, concealed allocation schedule. All included stroke patients received traditional rehabilitation programs, including balance, range of motion, or therapeutic exercise, and additional in-hospital supervised 30 min of MICT or HIIT for 36 times. Data were collected by a blinded assessor prior to randomization after completing the exercise trainings.

Participants Stroke patients, diagnosed by the neurologist, were surveyed. The inclusion criteria were listed as follows: (I) ≥ 20 years old; (II) stroke events with stable clinical status ≥ 3 months; (III) mini-mental state examination (MMSE)> 24; (IV) no acute coronary syndrome. Those who had unstable angina, systolic blood pressure> 200 mmHg or diastolic blood pressure> 110 mm Hg, symptomatic orthostatic hypotension, severe aortic stenosis (peak systolic pressure gradient> 50 mmHg, or an aortic valve opening area< 0.75 cm2), inflammatory disease within recent 3 months, uncontrolled cardiac dysrhythmias, uncompensated HF, third degree atrioventricular block, pericarditis or myocarditis within recent 3 months, embolic disease within recent 3 months, ST segment displacement≥ 2 mm at rest, and uncontrolled diabetes (blood glucose≥ 300 mg/dL or ≥ 250 mg/dL with ketone bodies) were not candidates of the study.

Stroke patients had absolute contraindications for cardiopulmonary exercise test (CPET) and aerobic activities, suggested by the American College of Sports Medicine (ACSM), were also excluded in the study. Afterwards, eligible participants were randomly assigned to the MICT and HIIT groups. Baseline demographic characteristics were also recorded. All subjects provided informed consent after the experimental procedures were explained.

Cardiopulmonary exercise test (CPET) Participants underwent an incremental exercise test on a bicycle ergometer (Ergoselect 150P, ergoline GmbH, Bitz, Germany) and the examination was performed at a work-rate of 10 W/min with continuous monitoring heart rate, brachial blood pressure, and arterial oxygen saturation, until the stop conditions described previously. Oxygen consumption (VO2) was measured by a cardiopulmonary measurement device (MasterScreen CPX, CareFusion Corp., Hoechberg, Germany). The VO2peak, minute ventilation (VE), and carbon dioxide production (VCO2) were defined as the guideline for exercise testing suggested by the ACSM. VE and VCO2 responses, acquired from the initiation of exercise to the peak values, were used to calculate the VE-VCO2 slope using the least-square linear regression. The O2 uptake efficiency slope (OUES), an estimation of the O2 consumption efficiency during exercise, was derived from the slope of a natural logarithm plot of VE vs. VO2.

Cardiac hemodynamic measurements Noninvasive continuous cardiac output monitoring system (NICOM, Cheetah Medical, Wilmington, Delaware) was used to evaluate cardiac hemodynamic response to exercise, which analyzes the phase shift (ΔΦ) created by alternating electrical current across the chest of the subject as described in our previous study.

Cerebral hemodynamic measurements Two pairs of near infra-red spectroscopy (NIRS) probes (Oxymon, Artinis, The Netherland) were attached to bilateral frontal areas of each included subject during CPET. The Beer-Lambert law was applied to measure light absorption across each pair of NIRS detectors reflecting changes of oxyhemoglobin ([O2Hb]) and deoxyhemoglobin ([HHb]) in the frontal cortex during exercise. Total Hb amount ([THb]) was calculated as the sum of [O2Hb] and [HHb], and was used as an index of change in blood volume in the frontal cortex. Differences of the tissue oxygenation (Δ[O2Hb] and Δ[HHb]) and regional blood flow (Δ[THb]) between involved and uninvolved frontal cortices (involved-uninvolved) were used to estimate effects of different exercise regimens on brain tissue oxygenation and regional blood flow.

Health-related QoL QoL was measured by the Short Form-36 Health Survey questionnaire (SF-36), and mini-mental status examination (MMSE) was used to assess QoL and cognitive functions of the participants.

Exercise training protocols The included subjects underwent 36 times of supervised hospital-based training (2-3 session/week) on a bicycle ergometer (Ergoselect 150P, Germany) as our previous protocol.15 The training comprised a warm-up at 30% of VO2peak for 3 min, followed by a MICT (60% of VO2peak) or HIIT (five 3-min intervals at 80% of VO2peak and each interval separated by 3-min exercise at 40% of VO2peak) for 30 min, and then a cool-down at 30% of VO2peak for 3 min. The training was terminated when the subject had symptoms/signs suggested by the ACSM guideline.

Serum preparation An amount of 20 ml fresh blood was collected from all our subjects before and after exercise training. Samples were centrifuged at 2500 rpm for 5 min at room temperature, and the upper serum was preserved for cell culture and measurement of serum BDNF levels.

Measurement of serum BDNF BDNF levels were assessed before and after aerobic exercise trainings. Prepared serum of 100 µL was added in each well coated with the human BDNF capture antibody in a solid-phase sandwich, two-site enzyme linked immunoassay (ELISA) kit (BioVision Inc., Milpitas, CA). The BDNF level was then determined by the microplate reader (SpectraMax M3, Molecular Devices LLC, San Jose, CA).

Cell culture and neurite growth assay Rat neuroblastic cells (PC-12 cell line) were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 7.5% patient serum (before and after exercise training), 7.5% horse serum (HS), 100 units/ml penicillin, and 100 mg/L streptomycin.

A total of 100000 cells were plated overnight on 35-mm dishes coated with poly- DL-lysine. After serum starvation in DMEM containing 2% HS for 12-18 h, cells were treated with 50 ng/ml NGF for the indicated time. Morphological changes were observed using the Leica TCS SP8 confocal microscopy 7 days after cultured with patient sera before and after exercise training. Percentage of cells with neurites of at least one cell body diameter in length was determined in five independent fields of every plate.

Fluorescent stains Cells (100000) were inoculated in each well of the eight-chamber slide (Millicell EZ slide, Millipore Corp., Billerica, MA) and were incubated at the pre- and post-MICT or HIIT sera for 12h. Vivid staining of Mitotracker (Invitrogen corp., Carlsbad, CA) was used to observe mitochondria in neuroblastic cells treated with sera from the above different status. The cells were stained with primary rabbit monoclonal anti-⍺-tubulin antibodies (Cell Signaling Technology Inc., Boston, MA). Fluorescein isothiocyanate-conjugated AffiniPure Goat anti-rabbit IgG (Jackson ImmunoResearch Laboratories, West Grove, PA) was used as the secondary antibody. Nuclei were counterstained with mounting medium (Vector Laboratories Inc., Burlingame, CA) containing 40,6-diamidino-2-phenylindole. The stained cells were examined with a confocal microscopic examination (Leica TCS SP8, Leica Microsystems Inc., Buffalo Grove, IL).

Statistical analysis Chi-square test was conducted to compare differences of non-parametric parameters between the two groups. Mann-Whitney U test was used to assess differences of age, stroke duration, body mass index (BMI), changes of exercise capacity, changes of brain oxygenation as well as regional blood volume, changes of BDNF levels, and changes of cell behaviors between the two groups. Differences of within group changes in numerical data was assessed by Wilcoxon matched-pair signed-rank test. Relationships between changes of measured clinical parameters after the exercise training and clinical information were analyzed by Pearson correlation. A p value < 0.05 was considered as statistical significance.


Recruitment information / eligibility

Status Completed
Enrollment 23
Est. completion date June 30, 2018
Est. primary completion date June 30, 2018
Accepts healthy volunteers No
Gender All
Age group 20 Years to 80 Years
Eligibility Inclusion Criteria:

- Stroke patients, diagnosed by the neurologist, with stable clinical status for greater than 3 months after conservative treatment or intervention were enrolled in the study.

- Mini-mental state examination (MMSE)> 24

- No acute coronary syndrome

Exclusion Criteria:

- Unstable angina

- Systolic blood pressure> 200 mmHg or diastolic blood pressure> 110 mm Hg

- Symptomatic orthostatic hypotension

- Severe aortic stenosis (peak systolic pressure gradient> 50 mmHg, or an aortic valve opening area< 0.75 cm2)

- Inflammatory disease within recent 3 months

- Uncontrolled cardiac dysrhythmias

- Uncompensated heart failure

- Pericarditis or myocarditis within recent 3 months

- Embolic disease within recent 3 months

- ST segment displacement= 2 mm at rest

- Uncontrolled diabetes (blood glucose= 300 mg/dL or = 250 mg/dL with ketone bodies).

Study Design


Related Conditions & MeSH terms


Intervention

Behavioral:
Aerobic exercise training
All recruited subjects underwent 36 times of moderate-intensity continuous training (MICT) at 60% of peak oxygen consumption (VO2peak) for 30 mins, and 10or had high-intensity interval training (HIIT) at alternative 80% and 40% VO2peak with the same training times and duration.

Locations

Country Name City State
n/a

Sponsors (1)

Lead Sponsor Collaborator
Chang Gung Memorial Hospital

Outcome

Type Measure Description Time frame Safety issue
Primary Peak cardiac output (CO) Peak CO in millimeter per minute measured by non-invasive cardiac output measurement during exercise test before and after exercise training. 3-4 months (for 36 times of exercise training)
Primary Peak exercise oxygen consumption (VO2peak) VO2peak in ml/min/kg measured by cardiopulmonary function test before and after exercise training. 3-4 months (for 36 times of exercise training)
Primary Oxygen uptake efficiency slope (OUES) OUES in liter per minute/log(Liter per minute) derived from oxygen consumptions along time during exercise test before and after exercise training. 3-4 months (for 36 times of exercise training)
Primary Ventilation/VCO2 ratio (Ve-VCO2) Ve-VCO2, a number, derived from exhaled CO2 (ml/min/kg) versus ventilation (ml/min/kg) graph along time during exercise test before and after exercise training. 3-4 months (for 36 times of exercise training)
Primary Differences of the brain tissue oxyhemoglobin (?[O2Hb]) Differences oxyhemoglobin between involved and uninvolved frontal cortices in µM measured by two pairs of near infra-red spectroscopy (NIRS) probes before and after exercise training. 3-4 months (for 36 times of exercise training)
Primary Differences of the brain tissue deoxygenation (?[HHb]) Differences deoxyhemoglobin between involved and uninvolved frontal cortices in µM measured by two pairs of near infra-red spectroscopy (NIRS) probes before and after exercise training. 3-4 months (for 36 times of exercise training)
Primary Differences of regional blood volume (?[THb]) Differences regional blood volume between involved and uninvolved frontal cortices in µM measured by two pairs of near infra-red spectroscopy (NIRS) probes before and after exercise training. 3-4 months (for 36 times of exercise training)
Primary Physical component score (PCS) Physical role function obtained from short form 36 questionnaire (SF-36) before and after exercise training. The SF-36 consists of eight scaled scores (vitality, physical functioning, bodily pain, general health perceptions, physical role functioning, emotional role functioning, social role functioning, mental health), which are the weighted sums of the questions in their section. Each scale is directly transformed into a 0-100 scale on the assumption that each question carries equal weight. The lower the score the more disability. The higher the score the less disability i.e., a score of zero is equivalent to maximum disability and a score of 100 is equivalent to no disability. 3-4 months (for 36 times of exercise training)
Primary Mental component score (MCS) Mental health score obtained from short form 36 questionnaire (SF-36) before and after exercise training. The SF-36 consists of eight scaled scores (vitality, physical functioning, bodily pain, general health perceptions, physical role functioning, emotional role functioning, social role functioning, mental health), which are the weighted sums of the questions in their section. Each scale is directly transformed into a 0-100 scale on the assumption that each question carries equal weight. The lower the score the more disability. The higher the score the less disability i.e., a score of zero is equivalent to maximum disability and a score of 100 is equivalent to no disability. 3-4 months (for 36 times of exercise training)
Primary Mini-mental status examination (MMSE) a 30-point questionnaire that is used extensively to measure cognitive impairment before and after exercise training. 3-4 months (for 36 times of exercise training)
Primary Brain-derived neurotrophic factor (BDNF) The human BDNF (ng/mL), essential in maintaining neurogenesis and synaptic plasticity, capture antibody in a solid-phase sandwich, two-site enzyme linked immunoassay (ELISA) kit. The BDNF level was then determined by the microplate reader before and after exercise training. 3-4 months (for 36 times of exercise training)
Primary Percentage of cell bearing neurites A total of 100000 cells were plated overnight on 35-mm dishes coated with poly- DL-lysine. After serum starvation in DMEM containing 2% HS for 12-18 h, cells were treated with 50 ng/ml NGF for the indicated time. Morphological changes were observed using the Leica TCS SP8 confocal microscopy 7 days after cultured with patient sera before and after exercise training. Percentage of cells with neurites of at least one cell body diameter in length was determined in five independent fields of every plate. 3-4 months (for 36 times of exercise training)
Primary Neuron images Cells (100000) were inoculated in each well of the eight-chamber slide (Millicell EZ slide, Millipore Corp., Billerica, MA) and were incubated at the pre- and post-MICT or HIIT sera for 12h. Vivid staining of Mitotracker (Invitrogen corp., Carlsbad, CA) was used to observe mitochondria in neuroblastic cells treated with sera from the above different status. The cells were stained with primary rabbit monoclonal anti-?-tubulin antibodies (Cell Signaling Technology Inc., Boston, MA). Fluorescein isothiocyanate-conjugated AffiniPure Goat anti-rabbit IgG (Jackson ImmunoResearch Laboratories, West Grove, PA) was used as the secondary antibody. Nuclei were counterstained with mounting medium (Vector Laboratories Inc., Burlingame, CA) containing 40,6-diamidino-2-phenylindole. The stained cells were examined with a confocal microscopic examination (Leica TCS SP8, Leica Microsystems Inc., Buffalo Grove, IL). 3-4 months (for 36 times of exercise training)
See also
  Status Clinical Trial Phase
Completed NCT05008822 - Effect of Motor Imaginary Training on Upper Limb Functions in Stroke N/A
Recruiting NCT04607070 - Ischemic Strokes While on NOAC - How Compliance Matters
Recruiting NCT05745051 - The Safety and Effectiveness of CVA-FLOW Software Device for Acute Ischemic Stroke N/A
Completed NCT05414539 - OptiCogs: A Multicomponent Intervention to Rehabilitate Cognitive Impairment in People Post-stroke N/A
Completed NCT04777955 - The Effects of Core Stabilization Exercises With Swisball in Stroke Patients N/A
Recruiting NCT03723382 - Stroke in Egyptian Clinical REgisTry
Completed NCT04306120 - Effects of Thermal Stimulation on Motor Recovery and Neuromuscular Property of Lower Extremity in Stroke N/A
Completed NCT02743520 - Arrhythmia Detection In Obstructive Sleep Apnea (ADIOS) N/A
Completed NCT03570216 - Cardiovascular Effects of Acute Exercise Post-Stroke N/A
Completed NCT03466372 - Innovative Gait Biofeedback Strategies for Stroke Rehabilitation N/A
Not yet recruiting NCT04523649 - Home-Based SolUtion for Remote Atrial Fibrillation Screening to PrevenT RecUrrence StrOke (HUA-TUO AF Trial) N/A
Completed NCT03194282 - Effects of the Insole on Balance Capacity in Chronic Stroke N/A
Recruiting NCT05289947 - MLC1501 Study Assessing Efficacy in Post STrOke Subjects With mOtor Deficits Phase 2
Completed NCT05058586 - The Effects of Aerobic Exercise Training on Cardiorespiratory Fitness in Stroke Patients N/A
Not yet recruiting NCT05046106 - MLC1501 Study Assessing Efficacy in STROke Recovery Phase 2/Phase 3
Completed NCT03845595 - Cortical Excitability Sequential Changes in Response to Transcranial Magnetic Stimulation Post Stroke N/A
Recruiting NCT04699409 - The Comparison of Educational Effectiveness Between FAST and STROKE 112 in Yunlin Community N/A
Not yet recruiting NCT04138407 - Effects of Seated Tai Chi on Recovery Among Stroke Survivors N/A
Completed NCT04096248 - CT (Computerized Tomography) for Late EndovasculAr Reperfusion
Recruiting NCT06303050 - Additional Effects of Mental Imagery Along With Task Oriented Training on Kinesiophobia in Patients With Stroke N/A