View clinical trials related to Stage IVB Lung Cancer AJCC v8.
Filter by:This phase II trial studies the effect of avapritinib in treating malignant solid tumors that have a genetic change (mutation) in CKIT or PDGFRA and have spread to nearby tissue or lymph nodes (locally advanced) or other places in the body (metastatic). Avapritinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Avapritinib may help to control the growth of malignant solid tumors.
This phase Ib trial evaluates the best dose and side effects of MRX-2843 when given in combination with osimertinib in treating patients with EGFR gene mutant non-small cell lung cancer that has spread to other places in the body (advanced). MRX-2843 and osimertinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This early phase I trial tests the use of a radioactive tracer (a drug that is visible during an imaging test) known as 18F-FMAU, for imaging with positron emission tomography/computed tomography (PET/CT) in patients with brain cancer or cancer that has spread to the brain (brain metastases). A PET/CT scan is an imaging test that uses a small amount of radioactive tracer (given through the vein) to take detailed pictures of areas inside the body where the tracer is taken up. 18F-FMAU may also help find the cancer and how far the disease has spread. Magnetic resonance imaging (MRI) is a type of imaging test used to diagnose brain tumors. 18F-FMAU PET/CT in addition to MRI may make the finding and diagnosing of brain tumor easier.
This phase II trial studies the effect of adaptive radiation planning in reducing side effects associated with radiation treatment and immunotherapy in patients with stage II-IV non-small cell lung cancer. Prior to radiation, patients undergo simulation, where they are positioned on the treatment table in a manner that can be reproduced each time they receive treatment in order to reach the tumor exactly at the same spot each time. However, a patient's tumor may shrink as they receive radiation, exposing healthy tissue to radiation as well. Adaptive radiation planning involves re-designing a treatment plan at set intervals. The purpose of this study is to see whether establishing set time points through adaptive radiation planning, regardless of whether the doctor notices a significant decrease in tumor size, will reduce some of the side effects associated with radiation treatment and immunotherapy.
This phase I/II trials investigates the side effects of olaparib and durvalumab and how well it works in combination with carboplatin, etoposide, and/or radiation therapy in treating patients with extensive stage-small cell lung cancer (ES-SCLC) who have not received treatment for their disease. PARPs are proteins that help repair DNA mutations. PARP inhibitors, such as olaparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Immunotherapy with monoclonal antibodies, such as durvalumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as carboplatin and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy sources to kill tumor cells and shrink tumors. Giving olaparib and durvalumab together with carboplatin, etoposide, and/or radiation therapy may help treat patients with ES-SCLC.
This trial studies how well embedded palliative care works in managing symptoms in participants with stage III-IV thoracic malignancies that has come back and their caregivers. Embedded palliative care may improve distress and anxiety in participants and caregivers.
This phase II Lung-MAP treatment trial studies the effect of AMG 510 in treating non-squamous non-small cell lung cancer that is stage IV or has come back (recurrent) and has a specific mutation in the KRAS gene, known as KRAS G12C. Mutations in this gene may cause the cancer to grow. AMG 510, a targeted treatment against the KRAS G12C mutation, may help stop the growth of tumor cells.
This phase III trial compares the effect of adding whole brain radiotherapy with hippocampal avoidance and memantine to stereotactic radiosurgery versus stereotactic radiosurgery alone in treating patients with cancer that has spread to the brain and come back in other areas of the brain after earlier stereotactic radiosurgery. Hippocampus avoidance during whole-brain radiation therapy decreases the amount of radiation that is delivered to the hippocampus, which is a brain structure that is important for memory. The medicine memantine is also often given with whole brain radiation therapy because it may decrease the risk of side effects of radiation on thinking and memory. Stereotactic radiosurgery delivers a high dose of radiation only to the small areas of cancer in the brain and avoids the surrounding normal brain tissue. Adding whole brain radiotherapy with hippocampal avoidance and memantine to stereotactic radiosurgery may be effective in shrinking or stabilizing cancer that has spread to the brain and returned in other areas of the brain after receiving stereotactic radiosurgery.
This trial studies the side effects of pembrolizumab with or without chemotherapy in treating patients with stage IV non-small cell lung cancer that has come back (recurrent) and has spread to other places in the body (advanced). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as pemetrexed and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pembrolizumab with or without chemotherapy may shrink the tumor in older patients with non-small cell lung cancer.
This phase II trial investigates how stereotactic radiosurgery affects brain functions while treating patients with small cell lung cancer that has spread to the brain (brain metastasis). Standard of care treatment consists of whole brain radiation therapy, which targets the entire brain, and may result in side effects affecting the nervous system. Stereotactic radiosurgery only targets areas of the brain that are suspected to be affected by the disease. The purpose of this trial is to learn if and how patients' brain functions are affected by the use of stereotactic radiosurgery rather than whole brain radiation therapy in managing brain metastasis caused by small cell lung cancer. Stereotactic radiosurgery may help patients avoid nervous system side effects caused by whole brain radiation therapy.