Clinical Trials Logo

Stage IVA Lung Cancer AJCC v8 clinical trials

View clinical trials related to Stage IVA Lung Cancer AJCC v8.

Filter by:

NCT ID: NCT04919382 Recruiting - Clinical trials for Stage IV Lung Cancer AJCC v8

Temozolomide and Atezolizumab as Second or Third Line for the Treatment of Metastatic or Recurrent Small Cell Lung Cancer

Start date: January 26, 2022
Phase: Phase 2
Study type: Interventional

This phase II trial studies the effects of temozolomide and atezolizumab as second or third line treatment for patients with small cell lung cancer that has spread to other places in the body (metastatic) or has come back (recurrent). Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving temozolomide and atezolizumab as second or third line treatment may help prolong survival in patients with small cell lung cancer.

NCT ID: NCT04919369 Recruiting - Clinical trials for Stage IV Lung Cancer AJCC v8

All-Trans Retinoic Acid (ATRA) and Atezolizumab for the Treatment of Recurrent or Metastatic Non-Small Cell Lung Cancer

Start date: October 18, 2021
Phase: Phase 1
Study type: Interventional

This phase Ib trial is to find out the best dose and side effects of all-trans retinoic acid (ATRA) and atezolizumab in treating patients with non-small cell lung cancer that has come back (recurrent) or has spread to other places in the body (metastatic). All-trans retinoic acid (ATRA) is made in the body from vitamin A and helps cells to grow and develop. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving all-trans retinoic acid (ATRA) and atezolizumab may help treat patients with non-small cell lung cancer.

NCT ID: NCT04902040 Recruiting - Clinical trials for Advanced Malignant Solid Neoplasm

Plinabulin in Combination With Radiation/Immunotherapy in Patients With Select Advanced Cancers After Progression on PD-1 or PD-L1 Targeted Antibodies

Start date: April 14, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

This phase Ib/II trial studies the side effects and best dose of plinabulin in combination with radiation therapy and immunotherapy in patients with select cancers that have spread to other places in the body (advanced) after progression on PD-1 or PD-L1 targeted antibodies. Plinabulin blocks tumor growth by targeting both new and existing blood vessels going to the tumor as well as killing tumor cells. Immunotherapy may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving plinabulin in combination with radiation therapy and immunotherapy may work better in treating advanced cancers.

NCT ID: NCT04804644 Recruiting - Clinical trials for Stage IV Lung Cancer AJCC v8

Testing if High Dose Radiation Only to the Sites of Brain Cancer Compared to Whole Brain Radiation That Avoids the Hippocampus is Better at Preventing Loss of Memory and Thinking Ability

Start date: March 24, 2021
Phase: Phase 3
Study type: Interventional

This phase III trial compares the effect of stereotactic radiosurgery to standard of care memantine and whole brain radiation therapy that avoids the hippocampus (the memory zone of the brain) for the treatment of small cell lung cancer that has spread to the brain. Stereotactic radiosurgery is a specialized radiation therapy that delivers a single, high dose of radiation directly to the tumor and may cause less damage to normal tissue. Whole brain radiation therapy delivers a low dose of radiation to the entire brain including the normal brain tissue. Hippocampal avoidance during whole-brain radiation therapy (HA-WBRT) decreases the amount of radiation that is delivered to the hippocampus which is a brain structure that is important for memory. The drug, memantine, is also often given with whole brain radiotherapy because it may decrease the risk of side effects related to thinking and memory. Stereotactic radiosurgery may decrease side effects related to memory and thinking compared to standard of care HA-WBRT plus memantine.

NCT ID: NCT04780568 Recruiting - Clinical trials for Stage IV Lung Cancer AJCC v8

Osimertinib and Tegavivint as First-Line Therapy for the Treatment of Metastatic EGFR-Mutant Non-small Cell Lung Cancer

Start date: January 18, 2022
Phase: Phase 1
Study type: Interventional

This phase Ib trial is to find out the best dose, possible benefits and/or side effects of osimertinib and tegavivint as first-line therapy in treating patients with EGFR-mutant non-small cell lung cancer that has spread to other places in the body (metastatic). Osimertinib and tegavivint may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT04771520 Recruiting - Metastatic Melanoma Clinical Trials

Avapritinib for the Treatment of CKIT or PDGFRA Mutation-Positive Locally Advanced or Metastatic Malignant Solid Tumors

Start date: January 20, 2021
Phase: Phase 2
Study type: Interventional

This phase II trial studies the effect of avapritinib in treating malignant solid tumors that have a genetic change (mutation) in CKIT or PDGFRA and have spread to nearby tissue or lymph nodes (locally advanced) or other places in the body (metastatic). Avapritinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Avapritinib may help to control the growth of malignant solid tumors.

NCT ID: NCT04762199 Recruiting - Clinical trials for Stage IV Lung Cancer AJCC v8

MRX-2843 and Osimertinib for the Treatment of Advanced EGFR Mutant Non-small Cell Lung Cancer

Start date: February 24, 2021
Phase: Phase 1
Study type: Interventional

This phase Ib trial evaluates the best dose and side effects of MRX-2843 when given in combination with osimertinib in treating patients with EGFR gene mutant non-small cell lung cancer that has spread to other places in the body (advanced). MRX-2843 and osimertinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT04751747 Recruiting - Clinical trials for Stage IV Lung Cancer AJCC v8

Adaptive Radiation Planning for the Reduction of Radiation-Induced Toxicity in Patients With Stage II-IV Non-small Cell Lung Cancer

Start date: February 11, 2021
Phase: N/A
Study type: Interventional

This phase II trial studies the effect of adaptive radiation planning in reducing side effects associated with radiation treatment and immunotherapy in patients with stage II-IV non-small cell lung cancer. Prior to radiation, patients undergo simulation, where they are positioned on the treatment table in a manner that can be reproduced each time they receive treatment in order to reach the tumor exactly at the same spot each time. However, a patient's tumor may shrink as they receive radiation, exposing healthy tissue to radiation as well. Adaptive radiation planning involves re-designing a treatment plan at set intervals. The purpose of this study is to see whether establishing set time points through adaptive radiation planning, regardless of whether the doctor notices a significant decrease in tumor size, will reduce some of the side effects associated with radiation treatment and immunotherapy.

NCT ID: NCT04728230 Recruiting - Clinical trials for Stage IV Lung Cancer AJCC v8

Olaparib and Durvalumab With Carboplatin, Etoposide, and/or Radiation Therapy for the Treatment of Extensive-Stage Small Cell Lung Cancer, PRIO Trial

Start date: January 5, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trials investigates the side effects of olaparib and durvalumab and how well it works in combination with carboplatin, etoposide, and/or radiation therapy in treating patients with extensive stage-small cell lung cancer (ES-SCLC) who have not received treatment for their disease. PARPs are proteins that help repair DNA mutations. PARP inhibitors, such as olaparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Immunotherapy with monoclonal antibodies, such as durvalumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as carboplatin and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy sources to kill tumor cells and shrink tumors. Giving olaparib and durvalumab together with carboplatin, etoposide, and/or radiation therapy may help treat patients with ES-SCLC.

NCT ID: NCT04625647 Recruiting - Clinical trials for Stage IV Lung Cancer AJCC v8

Testing the Use of Targeted Treatment (AMG 510) for KRAS G12C Mutated Advanced Non-squamous Non-small Cell Lung Cancer (A Lung-MAP Treatment Trial)

Start date: April 16, 2021
Phase: Phase 2
Study type: Interventional

This phase II Lung-MAP treatment trial studies the effect of AMG 510 in treating non-squamous non-small cell lung cancer that is stage IV or has come back (recurrent) and has a specific mutation in the KRAS gene, known as KRAS G12C. Mutations in this gene may cause the cancer to grow. AMG 510, a targeted treatment against the KRAS G12C mutation, may help stop the growth of tumor cells.