Clinical Trials Logo

Stage IV Prostate Cancer AJCC v8 clinical trials

View clinical trials related to Stage IV Prostate Cancer AJCC v8.

Filter by:

NCT ID: NCT04754425 Active, not recruiting - Clinical trials for Castration-Resistant Prostate Carcinoma

Erdafitinib for the Treatment of Patients With Castration-Resistant Prostate Cancer

Start date: July 15, 2021
Phase: Phase 2
Study type: Interventional

This phase II trial studies the effect of erdafitinib in treating patients with prostate cancer that grows and continues to spread despite the surgical removal of the testes or drugs to block androgen production (castration-resistant). Erdafitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving erdafitinib may help control disease in patients with castration-resistant prostate cancer. In addition, studying samples of blood, tissue, plasma, and bone marrow from patients with castration-resistant prostate cancer in the laboratory may help doctors learn more about changes that occur in deoxyribonucleic acid (DNA) and identify biomarkers related to cancer.

NCT ID: NCT04734730 Recruiting - Clinical trials for Stage IVB Prostate Cancer AJCC v8

Talazoparib With Androgen Deprivation Therapy and Abiraterone for the Treatment of Castration Sensitive Prostate Cancer

Start date: May 4, 2021
Phase: Phase 2
Study type: Interventional

This phase II trial studies the effect of talazoparib with androgen deprivation therapy and abiraterone in treating castration sensitive prostate cancer patients. Talazoparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep tumor cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Androgen can cause the growth of prostate tumor cells. Degarelix, leuprolide acetate, bicalutamide, goserelin acetate, and abiraterone lowers the amount of androgen made by the body. This may help stop the growth of tumor cells that need androgen to grow. Giving talazoparib with androgen deprivation therapy and abiraterone may improve cancer control for patients with castration sensitive prostate cancer.

NCT ID: NCT04716725 Active, not recruiting - Clinical trials for Metastatic Prostate Carcinoma

68Ga-PSMA-11 PET for the Diagnosis of Metastatic Castration Resistant Prostate Cancer

Start date: September 28, 2021
Phase: Phase 2
Study type: Interventional

This phase II trial studies the use of 68Ga-PSMA-11 positron emission tomography (PET) in diagnosing patients with prostate cancer that continues to grow despite the surgical removal of the testes or medical intervention to block androgen production (castration resistant), and has spread to other places in the body (metastatic). 68Ga- PSMA-11 is a new imaging agent that may help get more detailed pictures of the tumor. This trial aims to see whether using 68Ga-PSMA-11 PET scans may help doctors learn more about where disease is located in the body.

NCT ID: NCT04693377 Recruiting - Metastatic Melanoma Clinical Trials

Cryoablation Combined With Stereotactic Body Radiation Therapy for the Treatment of Painful Bone Metastases, the CROME Trial

Start date: March 16, 2021
Phase: N/A
Study type: Interventional

This trial compares cryoablation combined with stereotactic body radiation therapy to stereotactic body radiation therapy alone to see how well they work in treating patients with pain from cancer that has spread to the bones (bone metastases). Bone is a common site of metastasis in advanced cancer, and bone metastases often result in debilitating cancer-related pain. The current standard of care to treat painful bone metastases is radiation therapy alone. However, many patients do not get adequate pain relief from radiation therapy alone. Another type of therapy that may be used to provide pain relief from bone metastases is cryoablation. Cryoablation is a procedure in which special needles are inserted into the tumor site. These needles grow ice balls at their tips to freeze and kill cancer cells. The goal of this trial is to compare how well cryoablation in combination with radiation therapy works to radiation therapy alone when given to cancer patients to provide pain relief from bone metastases.

NCT ID: NCT04616547 Terminated - Clinical trials for Castration-Resistant Prostate Carcinoma

Treatment of Cancer-Related Bone Pain by Using Bone-Targeted Radiation-Based Therapy (Sn-117m-DTPA) in Patients With Prostate Cancer That Has Spread to Bones

Start date: December 18, 2021
Phase: Phase 2
Study type: Interventional

This phase II trial studies the effect of Sn-117m-DTPA on bone pain in patients with prostate cancer that has spread to the bones. Sn-117m-DTPA is a radioactive therapeutic agent that localizes to bones when given to patients. Sn-117m-DTPA may help reduce bone pain in patients with prostate cancer that has spread to the bones.

NCT ID: NCT04592237 Active, not recruiting - Clinical trials for Metastatic Prostate Carcinoma

Cabazitaxel, Carboplatin, and Cetrelimab Followed by Niraparib With or Without Cetrelimab for the Treatment of Aggressive Variant Metastatic Prostate Cancer

Start date: December 29, 2020
Phase: Phase 2
Study type: Interventional

This phase II trial studies the effect of cabazitaxel, carboplatin, and cetrelimab followed by niraparib with or without cetrelimab in treating patients with aggressive variant prostate cancer that has spread to other places in the body (metastatic). Chemotherapy drugs, such as cabazitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. PARPs are proteins that help repair DNA mutations. PARP inhibitors, such as niraparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Immunotherapy with monoclonal antibodies, such as cetrelimab, may help the body's immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. Giving niraparib with or without cetrelimab, after treatment with cabazitaxel, carboplatin, and cetrelimab, may help control aggressive variant prostate cancer.

NCT ID: NCT04585932 Withdrawn - Clinical trials for Metastatic Prostate Carcinoma

Androgen Deprivation Therapy and Apalutamide With or Without Radiation Therapy for the Treatment of Biochemically Recurrent Prostate Cancer, RESTART Study

Start date: November 24, 2020
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well androgen deprivation therapy and apalutamide with or without radiation therapy works for the treatment of prostate cancer that has a rise in the blood level of prostate-specific antigen (PSA) and has come back after treatment with surgery or radiation (biochemically recurrent). Androgens can cause the growth of prostate tumor cells. Apalutamide may help fight prostate cancer by blocking the use of androgens by the tumor cells. Androgen deprivation therapy drugs, leuprolide or degarelix, work to lower the amount of androgen in the body, also preventing the tumor cells from growing. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving radiation therapy with apalutamide and androgen deprivation therapy may help to control prostate cancer that has come back in only a few (up to 5) spots in the body.

NCT ID: NCT04550494 Recruiting - Clinical trials for Metastatic Malignant Solid Neoplasm

Measuring the Effects of Talazoparib in Patients With Advanced Cancer and DNA Repair Variations

Start date: April 26, 2021
Phase: Phase 2
Study type: Interventional

This phase II trial studies if talazoparib works in patients with cancer that has spread to other places in the body (advanced) and has mutation(s) in deoxyribonucleic acid (DNA) damage response genes who have or have not already been treated with another PARP inhibitor. Talazoparib is an inhibitor of PARP, a protein that helps repair damaged DNA. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. All patients who take part on this study must have a gene aberration that changes how their tumors are able to repair DNA. This trial may help scientists learn whether some patients might benefit from taking different PARP inhibitors "one after the other" and learn how talazoparib works in treating patients with advanced cancer who have aberration in DNA repair genes.

NCT ID: NCT04514484 Active, not recruiting - HIV Infection Clinical Trials

Testing the Combination of the Anti-cancer Drugs XL184 (Cabozantinib) and Nivolumab in Patients With Advanced Cancer and HIV

Start date: November 22, 2021
Phase: Phase 1
Study type: Interventional

This phase I trial investigates the side effects of cabozantinib and nivolumab in treating patients with cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and who are undergoing treatment for human immunodeficiency virus (HIV). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib and nivolumab may shrink or stabilize cancer in patients undergoing treatment for HIV.

NCT ID: NCT04501913 Active, not recruiting - Malignant Neoplasm Clinical Trials

Remote Telemonitoring of Patient-Generated Physiologic Health Data and Patient-Reported Outcomes

Start date: December 24, 2019
Phase:
Study type: Observational

This study examines at-home monitoring of patient-generated phsyiologic health data and patient-reported outcomes. Patient-generated health data using at-home monitoring devices and smart device applications are used more and more to measure value and quality in cancer care. This trial may show whether at-home monitoring programs can improve the care of patients after hospital discharge from surgery.