View clinical trials related to Stage IV Prostate Adenocarcinoma.
Filter by:This phase II trial studies how well radiation therapy with or without apalutamide works in treating patients with stage III-IV prostate cancer. Radiation therapy uses high energy x-ray to kill tumor cells and shrink tumors. Androgen can cause the growth of prostate cancer cells. Drugs, such as apalutamide, may lessen the amount of androgen made by the body. Giving radiation therapy and apalutamide may work better at treating prostate cancer than radiation alone.
This phase II trial studies how well gallium Ga 68-labeled gastrin-releasing peptide receptor (GRPR) antagonist BAY86-7548 (68Ga-RM2) positron emission tomography (PET)/computed tomography (CT) works in detecting regional nodal and distant metastases in patients with intermediate or high-risk prostate cancer. 68Ga-RM2 PET/CT scan may be able to see smaller tumors than the standard of care CT or magnetic resonance imaging scan.
This phase Ib trial studies the side effects and best dose of niraparib when given together with radium Ra223 dichloride in treating subjects with prostate cancer that keeps growing even when the amount of testosterone in the body is reduced to very low levels and has spread from the primary site to the bone. Radium Ra 223 dichloride, acts like calcium to target cancer in the bones and may deliver radiation directly to the bone tumors, limiting damage to the surrounding normal tissue. Niraparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving radium Ra 223 dichloride and niraparib may work better in treating subjects with hormone-resistant prostate cancer metastatic to the bone.
This phase II trial studies how well cabazitaxel and prednisone work in treating patients with hormone-resistant prostate cancer that has spread to other parts of the body. Drugs used in chemotherapy, such as cabazitaxel and prednisone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase II trial studies how well nivolumab and ipilimumab work in treating patients with hormone-resistant prostate cancer that has spread to other places in the body and express androgen receptor-variant-7 (AR-V7). Tumor cells expressing AR-V7 has been shown to be resistant to hormone therapy and some chemotherapy in patients with prostate cancer. Biomarker-driven therapy, such as nivolumab and ipilimumab, may work by blocking key biomarkers or proteins that help tumor cells to escape the immune system surveillance and this may help the immune system to kill tumor cells that express AR-V7.
This phase I trial studies the side effects and best dose of niclosamide when given together with enzalutamide in treating patients with castration resistant prostate cancer that has spread from the primary site to other places in the body. Androgens such as testosterone can cause the growth of prostate cancer cells. Drugs like enzalutamide block androgens from driving tumor growth; however, when androgen receptor splice variants are present, these drugs may not be effective. Niclosamide may decrease the amount of androgen receptor splice variant present within tumor cells, thus promoting the anti-tumor effects of enzalutamide. Giving niclosamide together with enzalutamide may be a better treatment for prostate cancer.
This phase II trial studies how well abiraterone acetate works in treating patients with hormone-resistant prostate cancer that has spread from the primary site (place where it started) to other places in the body (metastatic). Abiraterone acetate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.