View clinical trials related to Stage III Lung Cancer AJCC v8.
Filter by:This trial studies the role of the gut microbiome and effectiveness of a fecal transplant on medication-induced gastrointestinal (GI) complications in patients with melanoma or genitourinary cancer. The gut microbiome (the bacteria and microorganisms that live in the digestive system) may affect whether or not someone develops colitis (inflammation of the intestines) during cancer treatment with immune-checkpoint inhibitor drugs. Studying samples of stool, blood, and tissue from patients with melanoma or genitourinary cancer may help doctors learn more about the effects of treatment on cells, and help doctors understand how well patients respond to treatment. Treatment with fecal transplantation may help to improve diarrhea and colitis symptoms.
This phase II/III trial studies how well chemotherapy and radiation therapy (chemoradiation) with or without atezolizumab works in treating patients with limited stage small cell lung cancer. Drugs used in chemotherapy, such as etoposide, cisplatin, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving chemoradiation with or without atezolizumab may work better in treating patients with limited stage small cell lung cancer.
This phase I trial studies the safety of adding durvalumab to accelerated hypofractionated radiation therapy (ACRT) or conventionally fractionated radiation therapy, as well as the safety of adding either monalizumab or oleclumab to durvalumab plus conventionally fractionated radiation therapy in treating patients with non-small cell lung cancer that has spread to nearby tissue or lymph nodes (locally advanced). Accelerated hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Immunotherapy with monoclonal antibodies, such as durvalumab and monalizumab, may help the body's immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. Oleclumab is in a class of medications called monoclonal antibodies. It binds to a protein called CD73, which is found on some types of tumor cells. Oleclumab may block CD73 and help the immune system kill tumor cells. It is not yet known whether adding durvalumab to ACRT or adding monalizumab or oleclumab to durvalumab plus conventionally fractionated radiation therapy will work better in treating patients with non-small cell lung cancer.
This trial will pilot a psychosocial intervention called Conquer Fear Support (CFS) in patients with stage III-IV lung or gynecologic cancer who are experiencing fear of cancer progression. The intervention is adapted from a novel program called "Conquer Fear" which was developed by researchers in Australia. CFS may help in reducing worries, fears, and uncertainty in patients with advanced lung or gynecological cancer.
This Phase I/Il studies the side effects of endobronchial ultrasound guided interstitial photodynamic therapy work in treating patients with lung cancer that has spread to nearby tissues or lymph nodes. Photodynamic therapy consists of injecting a light sensitive drug called a photosensitizer, such as porfimer sodium, into the vein, waiting for it to accumulate in the tumor, and then activating it with a red laser light. Giving photodynamic therapy with Porfimer sodium may reduce the tumor size in patients with lung cancer.
This trial studies how well online psychosocial intervention works in improving social well-being and support in women who are undergoing treatment for stage I-IV non-small cell lung cancer. Psychosocial intervention techniques, such as mindfulness, compassion, and emotional processing, may improve distress and help patients manage symptoms related to non-small cell lung cancer.
This trial studies the genetic analysis of blood and tissue samples from patients with cancer that has spread to other anatomic sites (advanced) or is no longer responding to treatment. Studying these samples in the laboratory may help doctors to learn how genes affect cancer and how they affect a person's response to treatment.
This phase II/III trial studies how well anamorelin hydrochloride works in reducing anorexia in patients with non-small cell lung cancer that has spread to other places in the body. Anamorelin hydrochloride may help to improve patients' appetite in order to stop weight loss.
This phase I trial studies the best dose and side effects of abexinostat and how well it works with given together with pembrolizumab in treating participants with microsatellite instability (MSI) solid tumors that have spread to other places in the body. Abexinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Giving abexinostat and pembrolizumab may work better in treating participants with solid tumors.
This phase Ib/II trial studies the side effects and best dose of trametinib when given together with pembrolizumab and to see how well they work in treating patients with non-small cell lung cancer that has come back and spread to other places in the body, cannot be removed by surgery, or spread to nearby tissues or lymph nodes. Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving trametinib and pembrolizumab may work better in treating patients with non-small cell lung cancer.