View clinical trials related to Stage III Lung Cancer AJCC v8.
Filter by:This trial studies cardiac changes after radiation or chemo-radiation for the treatment of lung or esophageal cancer that has not spread to other places in the body (non-metastatic) or has not come back (non-recurrent). Continuous cardiac monitoring with an implanted device may help to identify cardiac changes that would remain unnoticed, and facilitate the treatment of these early cardiac changes as part of standard care.
This phase III trial studies how well an antibody (durvalumab) with chemotherapy and radiation therapy (chemoradiation) works in treating patients with stage III non-small cell lung cancer that cannot be removed by surgery (unresectable). Immunotherapy with monoclonal antibodies, such as durvalumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This study is being done to see if adding durvalumab to standard chemoradiation followed by additional durvalumab can extend patients life and/or prevent the tumor from coming back compared to the usual approach of chemoradiation alone followed by durvalumab.
This trial studies the side effects of single fraction stereotactic body radiation therapy after surgery in treating patients with non-small cell lung cancer. Standard radiation for lung cancer involves delivering small doses of daily radiation for several weeks. However, this technique has resulted in inferior outcomes compared to surgery and is associated with damage to surrounding normal lung. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. Giving stereotactic body radiation therapy in fewer treatment sessions (single fraction) may kill tumor cells and cause less damage to normal tissue.
This phase I trial studies the side effects of ipilimumab and nivolumab in combination with radiation therapy, and to see how well they work in treating patients with stage II-III non-small cell lung cancer. Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy rays to kill tumor cells and shrink tumors. Ipilimumab and nivolumab may also help radiation therapy work better by making tumor cells more sensitive to the radiation therapy. Giving ipilimumab and nivolumab in combination with radiation therapy may work better in treating patients with stage II-III non-small cell lung cancer compared to standard chemotherapy in combination with radiation therapy.
This phase II single-arm pilot study will evaluate the safety and preliminary efficacy of Optune-Tumor Treating Fields (TTFields) therapy as a prophylactic approach to reducing small cell lung cancer (SCLC) that has spread to the brain (brain metastases). Optune is a portable battery powered device that produces alternating electrical fields, termed tumor treatment fields ("TTFields") within the human body. These TTFields are applied to the patient by electrically insulated surface transducer arrays, which function to disrupt the rapid cell division of cancer cells.
This trial studies how well dyadic yoga intervention works in improving physical performance and quality of life in patients with stage I-IV non-small cell lung or esophageal cancer undergoing radiotherapy and their caregivers. Dyadic yoga intervention may help to improve physical function, fatigue, sleep difficulties, depressive symptoms, and overall quality of life for patients with non-small cell lung cancer and/or their caregivers.
This trial studies treatment effects on development of chemotherapy-induced peripheral neuropathy in patients with cancer. Treatments for cancer can cause a problem to the nervous system (called peripheral neuropathy) that can lead to tingling or less feeling in hands and feet. Studying certain risk factors, such as age, gender, pre-existing conditions, and the type of treatment for cancer may help doctors estimate how likely patients are to develop the nerve disorder.
This trial studies comprehensive geriatric and quality of life assessments in older patients with head and neck or lung cancer that has or has not spread to other parts of the body who are undergoing standard surgery or chemoradiation, and their caregivers. Comprehensive geriatric assessment may improve the quality of life of patients with head and neck or lung cancer and their caregivers.
This phase I/II trial studies how well patient portal and navigation program work in providing information for Asian American cancer patients. Patient portal and navigation program may help to improve the care provided to Asian American cancer patients.This study is offered in the following languages in addition to English: Chinese (Cantonese or Mandarin) and Vietnamese.
This phase Ib/II trial studies the best dose of temozolomide and how well it works with niraparib and atezolizumab in treating patients with solid tumors that have spread to other places in the body (advanced) and extensive-stage small cell lung cancer with a complete or partial response to platinum-based first-line chemotherapy. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Niraparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving temozolomide, niraparib and atezolizumab may work better in treating patients with advanced solid tumors and extensive-stage small cell lung cancer.