View clinical trials related to Sports Medicine.
Filter by:Ageing is characterized by a decline in neuromuscular control and a progressive loss of muscle mass, strength and power, leading to reduced mobility, loss of independence, higher hospitalizations rate, and increased all-cause mortality. Several studies suggest a non-linear decay of these age-related changes. Denervation-reinnervation processes, resulting in fewer but larger surviving motor units in advanced age, start as early as age 50-60yr and can be magnified in older adults (>75yr). Significant functional consequences in daily living activities are not usually observed until approximately 50yr. However, after 50yr, muscle strength/power reduction is accelerated and becomes faster than average muscle mass loss. Most observations come from cross- sectional studies and several confounding factors associated with secondary aging, such as physical activity levels, may contribute to (or compensate for) the observed age-related reductions in neuromuscular function. Compared to cross-sectional designs, prospective ones are advantageous in their ability to investigate fundamental mechanisms by excluding inter-subjects variability. In this project, the investigators will characterize longitudinal age-related changes in motor function, physical performance and muscle aerobic metabolism with an integrated approach. The investigators aim to combine classical methods of in-vivo and ex-vivo evaluation of neuromuscular function with innovative approaches for assessing changes and interactions between neural, structural and metabolic variables in two critical phases of ageing: 55-60yrs and 75-80yrs. Within each age-group, subjects will be classified based on their functional capabilities and divided in either active or sedentary. The investigators will describe the 2-yr time course of 1) mechanisms impairing neuromuscular function (denervation-reinnervation processes); 2) interactions between muscle structural changes and neural/metabolic impairments; 3) functional and metabolic changes occurring at whole muscle as well as single fibers level. The results will extend current understanding of physiological determinants of neuromuscular alterations in aging by identifying the course and rate of changes of specific factors that mediate functional loss and disability in older adults.