Spinal Cord Injuries Clinical Trial
Official title:
Brain Controlled Spinal Cord Stimulation In Participants With Spinal Cord Injury For Lower Limb Rehabilitation
The purpose of this clinical study is to evaluate the preliminary safety and effectiveness of using a cortical recording device (ECoG) combined with lumbar targeted epidural electrical stimulation (EES) of the spinal cord to restore voluntary motor functions of lower limbs in participants with chronic spinal cord injury suffering from mobility impairment. The goal is to establish a direct bridge between the motor intention of the participant and the the spinal cord below the lesion, which should not only improve or restore voluntary control of legs movement and support immediate locomotion, but also promote neurological recovery when combined with neurorehabilitation.
In a current first-in-human clinical trial, called STIMO (ClinicalTrials.gov, NCT02936453), Electrical Epidural Stimulation (EES) of the spinal cord is applied to enable individuals with chronic severe spinal cord injury (SCI) to complete intensive locomotor neurorehabilitation training. In this clinical feasibility study, EES immediately enhances walking function and, with repeated use as part of the EES-assisted neurorehabilitation program, improves leg motor control and neurological recovery in severe SCI participants to a certain extent. Linking brain activity to spinal stimulation, as shown in preclinical and clinical studies, enhances usability of EES and neurological recovery. Clinatec (CEA, Grenoble, France) has developed an implantable electrocorticogram (ECoG) recording device with a 64-channel epidural electrode array called WIMAGINE capable of recording electrical signals from the motor cortex for an extended period and with a high signal to noise ratio. This ECoG-based system allowed tetraplegic patients to control an exoskeleton (Clinicaltrials.gov, NCT 02550522) with up to 8 degrees of freedom for the upper limb control. This device has been implanted in 5 chronic participants so far; one of them has been using this system both at the hospital and at home for more than 3 years. The ECoG WIMAGINE technology has been combined with EES in the current first-in-human clinical trial STIMO-BSI (Brain Spine Interface) (Clinicaltrials.gov, NTC04632290): with the WIMAGINE technology, cortical motor intentions for leg movements are recorded, and real-time decoding translates brain signals into EES commands. This digital bridge empowered a chronic SCI participant, who has been part of the STIMO clinical trial, to regain leg motor control by volitional fine-tuned EES amplitudes enabling standing, walking and adapting to diverse terrains, demonstrating the efficacy of the BSI. Moreover, BSI-assisted neurorehabilitation mediated neurological improvements after three years of stable performance of the patient, that persisted even when the BSI was switched off. In this study, the investigators will assess the preliminary safety and effectiveness of ECoG-controlled EES in individuals with chronic SCI who have not previously participated in STIMO clinical trial, to establish a direct bridge between the motor intention and the spinal cord below the lesion. This could improve or restore voluntary control of legs movement as well as promote neurological recovery when combined with neurorehabilitation. The WIMAGINE ECoG system will be coupled with the ARC-IM purpose-built spinal cord stimulation technology in the ARC-BSI Lumbar system. An equivalent technology (ARC-BSI Cervical system) is currently used in the ongoing UP2 clinical study (Clinicaltrials.gov, NCT05665998) for upper limb rehabilitation in patients with cervical spinal cord injury. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT06321172 -
Muscle and Bone Changes After 6 Months of FES Cycling
|
N/A | |
Completed |
NCT03457714 -
Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
|
||
Recruiting |
NCT05484557 -
Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury
|
N/A | |
Suspended |
NCT05542238 -
The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury
|
N/A | |
Recruiting |
NCT05503316 -
The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System
|
N/A | |
Not yet recruiting |
NCT05506657 -
Early Intervention to Promote Return to Work for People With Spinal Cord Injury
|
N/A | |
Recruiting |
NCT03680872 -
Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System
|
N/A | |
Recruiting |
NCT04105114 -
Transformation of Paralysis to Stepping
|
Early Phase 1 | |
Completed |
NCT04221373 -
Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation
|
N/A | |
Completed |
NCT00116337 -
Spinal Cord Stimulation to Restore Cough
|
N/A | |
Completed |
NCT03898700 -
Coaching for Caregivers of Children With Spinal Cord Injury
|
N/A | |
Recruiting |
NCT04883463 -
Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury
|
N/A | |
Active, not recruiting |
NCT04881565 -
Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES)
|
N/A | |
Completed |
NCT04864262 -
Photovoice for Spinal Cord Injury to Prevent Falls
|
N/A | |
Recruiting |
NCT04007380 -
Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI
|
N/A | |
Active, not recruiting |
NCT04544761 -
Resilience in Persons Following Spinal Cord Injury
|
||
Terminated |
NCT03170557 -
Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation
|
N/A | |
Completed |
NCT03220451 -
Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients
|
N/A | |
Recruiting |
NCT04811235 -
Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial
|
N/A | |
Recruiting |
NCT04736849 -
Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury
|
N/A |