Clinical Trials Logo

Clinical Trial Summary

The loss of movement and walking ability significantly affects quality of life after spinal cord injury. In addition, bladder dysfunction consistently ranks as one of the top disorders affecting quality of life after spinal cord injury. The overall objective of this study is to demonstrate that epidural stimulation may be a method for improving stepping, standing and bladder function in individuals with spinal cord injury. With the use of epidural stimulation, the investigators propose to investigate how well the participant can stand and walk and how well the participant's bladder can store or hold urine as well as void or empty urine. The results of this study may aid in the development of treatments to help individuals with spinal cord injuries that are unable to stand or walk and have impaired bladder function.


Clinical Trial Description

While the investigators have demonstrated the benefits of scES in chronic SCI with one of the largest series (23 patients to date) the investigators are acutely aware of persistent gaps that need to be filled in order to advance the field of neuromodulation forward. Technological advances to upgrade the stimulator's programming and wireless communication platforms are critically needed in order to integrate multiple training paradigms across multiple systems (i.e. motor and autonomic), as well as take advantage of wireless monitoring technology that could improve the patient experience. The extensive patient self-monitoring, for example regular monitoring of blood pressure during bladder filling cycles, and required manual interaction with the programming device to change parameters for optimal stimulation, remains one of the largest limiting factors in the effective utilization of this technology outside of the laboratory. Without technology components developed specifically for individuals with SCI, treatment effects could be lost due to the burden placed on the individual. Our aim is to develop technology that will interact with currently available systems, to facilitate the implementation and integration of training paradigms for the recovery of locomotion and bladder function in individuals with acute SCI and promote safe long-term use of the technology in the home and community. To this end, this study will provide a flexible communication platform specific for SCI, allow for the evaluation of integrated technology in individuals with high plasticity potential (< 1 year post injury) and allow for the longitudinal evaluation of therapeutic benefits of scES as individuals transition from acute to chronic phase of injury. Aim 1: To evaluate the use of position based sensors internal to the neurostimulator to modulate stimulation parameters used in the training for motor function recovery following severe SCI. Aim 2: To identify the scES parameters, using physiological feedback (continuous measures of systolic and diastolic pressure and heart rate), that improve bladder storage and emptying while controlling blood pressure following severe SCI. Aim 3: To improve device technologies and develop predictive learning algorithms that will allow for the integration of multiple training paradigms used by a single participant. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04879862
Study type Interventional
Source University of Louisville
Contact Manpreet Chopra
Phone 502-582-7443
Email manpreet.chopra@louisville.edu
Status Recruiting
Phase N/A
Start date April 4, 2022
Completion date April 1, 2026

See also
  Status Clinical Trial Phase
Active, not recruiting NCT06321172 - Muscle and Bone Changes After 6 Months of FES Cycling N/A
Completed NCT03457714 - Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
Recruiting NCT05484557 - Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury N/A
Suspended NCT05542238 - The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Not yet recruiting NCT05506657 - Early Intervention to Promote Return to Work for People With Spinal Cord Injury N/A
Recruiting NCT03680872 - Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System N/A
Recruiting NCT04105114 - Transformation of Paralysis to Stepping Early Phase 1
Completed NCT04221373 - Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation N/A
Completed NCT00116337 - Spinal Cord Stimulation to Restore Cough N/A
Completed NCT03898700 - Coaching for Caregivers of Children With Spinal Cord Injury N/A
Recruiting NCT04883463 - Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury N/A
Active, not recruiting NCT04881565 - Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES) N/A
Completed NCT04864262 - Photovoice for Spinal Cord Injury to Prevent Falls N/A
Recruiting NCT04007380 - Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI N/A
Active, not recruiting NCT04544761 - Resilience in Persons Following Spinal Cord Injury
Completed NCT03220451 - Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients N/A
Terminated NCT03170557 - Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation N/A
Recruiting NCT04811235 - Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial N/A
Recruiting NCT04736849 - Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury N/A