Spinal Cord Injuries Clinical Trial
Official title:
Motor Cortex Plus Spinal Cord Stimulation for Chronic Cervical Spinal Cord Injury
The goal of this project is to strengthen residual corticospinal tract (CST) connections after partial injury using combined motor cortex and spinal cord stimulation to improve arm and hand function after spinal cord injury (SCI). To do this, the investigators will test the combination of transcranial magnetic stimulation (TMS) with transcutaneous spinal direct current stimulation (tsDCS) in individuals with chronic cervical SCI.
For people with cervical SCI, regaining hand function is their highest priority. Most SCIs are motor incomplete, and even when complete, there is often significant amounts of spared spinal cord white matter. The goal of this project is to strengthen residual corticospinal tract (CST) connections after partial injury using combined motor cortex and spinal cord stimulation to improve arm and hand function. The team's research in rats, which has been refined in over a decade of study, demonstrates that brain and spinal cord stimulation fully restores motor skills in rats after CST injury. Most significant for the population of people living with SCI, this approach is effective in the chronic phase of injury. Recently, the investigators translated this electrical stimulation protocol into one that can be rapidly translated into people using non-invasive techniques. In rats, combined electrical intermittent theta burst stimulation (iTBS) of motor cortex with transcutaneous spinal direct current stimulation (tsDCS) activates the cervical spinal cord. This protocol, which is administered only 30 minutes a day for 10 days, causes large-scale sprouting of CST connections and full recovery of forelimb function. Thus, by combining brain and spinal cord electrical stimulation in rodents with corticospinal system injury durable CST axonal sprouting, strengthening of CST connections, and recovery is achieved. In this proposal, the investigators intend to bring this promising therapeutic approach to humans with cervical SCI. The team will study people with chronic, motor incomplete, SCI to test the safety and feasibility of this approach. The investigators' approach is non-invasive and, if shown to be effective, can be rapidly integrated into current clinical practice to help restore hand function in people with chronic SCI. Each subject will undergo four stimulation sessions of 4 hours or less. Outcomes focus on safety and neurophysiological transmission. The first session is used to determine the target muscle, optimal scalp site for TMS stimulation, assess cervical tsDCS tolerability, and measure maximal contraction force of the fingers, wrist, and elbow. The second through fourth sessions will assess the acute tolerability and effects of tsDCS with different intensities and electrode configurations in a randomized order. Each session will test a different electrode configuration and will be divided into two stages. The first stage will randomly deliver three 5-minute blocks of tsDCS at different randomized intensities (100%, 66% and 0% (sham) of tolerated intensity, as determined in Session 1) and assess changes in corticospinal and spinal excitability in response to TMS and peripheral nerve stimulation (PNS) of the target muscle. The second stage will assess the acute effects of 20-minutes of tsDCS delivered at two thirds the maximal tolerability on TMS- and PNS-evoked responses and performance of a motor task. Safety and tolerability will be closely monitored at all times. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT06321172 -
Muscle and Bone Changes After 6 Months of FES Cycling
|
N/A | |
Completed |
NCT03457714 -
Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
|
||
Recruiting |
NCT05484557 -
Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury
|
N/A | |
Suspended |
NCT05542238 -
The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury
|
N/A | |
Recruiting |
NCT05503316 -
The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System
|
N/A | |
Not yet recruiting |
NCT05506657 -
Early Intervention to Promote Return to Work for People With Spinal Cord Injury
|
N/A | |
Recruiting |
NCT04105114 -
Transformation of Paralysis to Stepping
|
Early Phase 1 | |
Recruiting |
NCT03680872 -
Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System
|
N/A | |
Completed |
NCT04221373 -
Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation
|
N/A | |
Completed |
NCT00116337 -
Spinal Cord Stimulation to Restore Cough
|
N/A | |
Completed |
NCT03898700 -
Coaching for Caregivers of Children With Spinal Cord Injury
|
N/A | |
Recruiting |
NCT04883463 -
Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury
|
N/A | |
Active, not recruiting |
NCT04881565 -
Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES)
|
N/A | |
Completed |
NCT04864262 -
Photovoice for Spinal Cord Injury to Prevent Falls
|
N/A | |
Recruiting |
NCT04007380 -
Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI
|
N/A | |
Active, not recruiting |
NCT04544761 -
Resilience in Persons Following Spinal Cord Injury
|
||
Terminated |
NCT03170557 -
Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation
|
N/A | |
Completed |
NCT03220451 -
Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients
|
N/A | |
Recruiting |
NCT04811235 -
Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial
|
N/A | |
Recruiting |
NCT04736849 -
Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury
|
N/A |