Spinal Cord Injuries Clinical Trial
Official title:
Pulsed Magnetic Stimulation - Managing Spasticity in Spinal Cord Injury
Spasticity (tightening, spasming and/or contractions of muscles) is a commonly encountered consequence of injuries to the central nervous system. Spasticity has an adverse effect on quality of life and function of patients with spinal cord injuries, stroke and cerebral palsy. Conventional management consists of medication, injections of botulinum toxin and occasionally extensive surgical interventions. Several studies have examined the use of repetitive magnetic stimulation of the brain and of peripheral nerves to produce long-term depression of spasticity. Recently, Theta burst sequence low-dose magnetic stimulation has been shown to mark unused synaptic connections for deletion. By using pulsed magnetic stimulation of the spinal cord the abnormal connections arising from injury may be identified for deletion, therefore potentially minimising the mis-firing circuits. The investigators plan, in this pilot study, to test whether firstly the application of pulsed magnetic stimulation of the spinal cord is achievable in patients with spinal cord injury (SCI) and secondly whether it has an effect on lower limb spasticity. These results will be used to help design a larger trial, to expand the numbers of participants and variety of pathologies treated. Participants (in-patients at the Midland Centre for Spinal Injuries) with stable SCI will be randomised to receive either intermittent pulsed magnetic stimulation or no stimulation. Patients will be blinded as to whether they are receiving stimulation (the machine will be active up and placed in the same position for both groups, except the sham group will have the stimulation coil applied in an orientation that does not deliver the magnetic field to the spinal cord).
The investigators are trying to understand the potential for low-dose magnetic stimulation to reduce unwanted symptoms including spasticity following a spinal cord injury. After an injury to the spinal cord the nerves within the spinal cord below the level of the injury reorganise themselves. This leads to unwanted connections producing a condition known as spasticity. Spasticity is experienced by patients as unwanted muscle stiffness. In patients with some sensation this can cause pain and can often lead to problems with bones and joints and difficulties with positioning for seating and standing. Along with spasticity, altered functioning in the nerves that control blood pressure, sweating, bowel and bladder can all create difficulties for someone who has had such an injury. It is now known that the nervous system reorganises itself on a continuous basis even after humans have finished growing. For example, it has to do this so that we can form memories and learn. This process is necessary in healthy life and is regulated by an army of cells that roam through the central nervous system including the spinal cord. These cells known as microglial cells act as gardeners, pruning connections that aren't needed and strengthening connections that are needed. From recent work in the field of biology it is now understood that a chemical called complement is used as a marker a bit like paint on a tree that is to be trimmed, to tell the microglial cells where to cut or where to strengthen. Very low level pulsed magnetic stimulation can mark connections that need to be trimmed so that the microglial cells can go about their job. The investigators want to identify whether by using a very low dose of magnetic stimulation we could reduce the abnormal connections in the spinal cord that cause spasticity. The investigators believe this is a very safe treatment because it is using magnetic stimulation on the spinal cord at a 10th of the level that is commonly used on the brain. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT06321172 -
Muscle and Bone Changes After 6 Months of FES Cycling
|
N/A | |
Completed |
NCT03457714 -
Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
|
||
Recruiting |
NCT05484557 -
Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury
|
N/A | |
Suspended |
NCT05542238 -
The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury
|
N/A | |
Recruiting |
NCT05503316 -
The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System
|
N/A | |
Not yet recruiting |
NCT05506657 -
Early Intervention to Promote Return to Work for People With Spinal Cord Injury
|
N/A | |
Recruiting |
NCT03680872 -
Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System
|
N/A | |
Recruiting |
NCT04105114 -
Transformation of Paralysis to Stepping
|
Early Phase 1 | |
Completed |
NCT04221373 -
Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation
|
N/A | |
Completed |
NCT00116337 -
Spinal Cord Stimulation to Restore Cough
|
N/A | |
Completed |
NCT03898700 -
Coaching for Caregivers of Children With Spinal Cord Injury
|
N/A | |
Recruiting |
NCT04883463 -
Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury
|
N/A | |
Active, not recruiting |
NCT04881565 -
Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES)
|
N/A | |
Completed |
NCT04864262 -
Photovoice for Spinal Cord Injury to Prevent Falls
|
N/A | |
Recruiting |
NCT04007380 -
Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI
|
N/A | |
Active, not recruiting |
NCT04544761 -
Resilience in Persons Following Spinal Cord Injury
|
||
Completed |
NCT03220451 -
Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients
|
N/A | |
Terminated |
NCT03170557 -
Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation
|
N/A | |
Recruiting |
NCT04811235 -
Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial
|
N/A | |
Recruiting |
NCT04736849 -
Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury
|
N/A |