Clinical Trials Logo

Clinical Trial Details — Status: Active, not recruiting

Administrative data

NCT number NCT03975634
Other study ID # 19.0377
Secondary ID
Status Active, not recruiting
Phase N/A
First received
Last updated
Start date August 12, 2019
Est. completion date June 30, 2024

Study information

Verified date June 2023
Source University of Louisville
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Paralysis of trunk muscles and the inability to sit upright is one of the major problems facing adults and children with spinal cord injury (SCI). Activity-based locomotor training has resulted in improved trunk control in children with spinal cord injury, though full recovery is not achieved in all children. Transcutaneous spinal stimulation' (TcStim), a stimulation applied over the skin to the sensory nerves and spinal cord, is a promising tool that may further enhance improvements to trunk control. The purpose of this study is to determine the feasibility (can we do it) and safety of Transcutaneous Stimulation (TcStim) in children with SCI to acutely improve sitting upright and when used with activity-based locomotor training (AB-LT). Thus, can we provide this therapy to children and do so safely examining a child's immediate response and cumulative response relative to safety and comfort. Eight participants in this study will sit as best they can with and without the stimulation (i.e. stimulation applied across the skin to the nerves entering the spinal cord and to the spinal cord) and their immediate response (safety, comfort, trunk position) recorded. Then, two participants will receive approximately 40 sessions of activity-based locomotor training in combination with the stimulation. Their cumulative response of stimulation (i.e. safety, comfort, feasibility) across time will be documented. Participation in this study may last up to 3 days for the 8 participants being observed for acute response to stimulation and up to 9 weeks for the participants being observed for cumulative response to training with stimulation. We will monitor the participants throughout the testing and training for their response to the stimulation (i.e. safety) and their comfort.


Description:

Similar to adults, children with severe spinal cord injury (SCI) suffer the devastating consequences of limb and trunk muscle paralysis rendering them unable to sit upright, stand, or walk. Unique to pediatric-onset SCI, nearly 100% of children injured under the age of 10 develop neuromuscular scoliosis with approximately 65% requiring surgical intervention. Given the importance of muscle activity and load-bearing for musculoskeletal development, SCI-induced trunk muscle paralysis during rapid growth contributes significantly to the onset and progression of scoliosis. Current physical rehabilitation interventions after pediatric-onset SCI are based on the premise of permanence of SCI-induced paralysis and the inability to restore intrinsic trunk control. As a result, thoraco-lumbosacral braces remain the standard of care for upright sitting support without clear efficacy for reducing the incidence of neuromuscular scoliosis. Advances in rehabilitation after SCI, for adult and pediatric populations, capitalize on the intrinsic capacity of spinal neuronal networks for generation of motor output below the lesion in response to sensory input during activity-based locomotor training (AB-LT). Our recent work demonstrated remarkable improvements in trunk control as measured by the Segmental Assessment of Trunk Control (SATCo) in all 21 participants with SCI, age range: 17 months-12 years at enrollment and mean time since injury 1.5 years (range 1 month-6 years), receiving AB-LT across 60 sessions. Sensory-afferent driven activation of the intrinsic synergies between the lower limb and trunk extensor muscles above, across and below the lesion likely underlies the physiological adaptations responsible for these gains. While all children improved, not all attained full trunk control. Incorporation of neuromodulatory techniques, such as epidural spinal cord stimulation, further challenges the limits for SCI recovery previously thought possible. There are recent reports of individuals with chronic complete SCI regaining the capacity to stand and walk with stimulation. Transcutaneous spinal stimulation (TcStim) provides a non-invasive neuromodulatory tool that may, similar to epidural stimulation, increase the central state of excitability below the lesion, thereby enabling greater capacity for integration of sensory input and augment motor output to potentiate trunk motor recovery. Children with SCI may not only benefit from novel neurotherapeutic interventions, but also may demonstrate even greater improvements due to inherent plasticity present during development. Previous studies demonstrated the efficacy of TcStim to acutely improve sitting posture and trunk muscle activation in adults with SCI. In children with cerebral palsy, TcStim combined with AB-LT significantly improved locomotion compared to AB-LT alone. Our overall objective is to demonstrate 'proof-of-principle', as a necessary first step, that TcStim is a feasible and safe approach to a therapeutic intervention targeting trunk control in children with SCI. If found to be feasible and safe, then future studies will employ TcStim in combination with restorative rehabilitation for children with SCI to examine the effect on trunk control.


Recruitment information / eligibility

Status Active, not recruiting
Enrollment 9
Est. completion date June 30, 2024
Est. primary completion date June 30, 2022
Accepts healthy volunteers No
Gender All
Age group 2 Years to 15 Years
Eligibility Inclusion Criteria: - history of chronic, acquired upper motor neuron SCI (traumatic or non-traumatic); - discharged from in-patient rehabilitation - moderate to severe trunk control deficit as either documented with the Segmental Assessment of Trunk Control (SATCo, score < 15/20) or reported/observed inability to sit fully upright and without use of arm support - history of completion of a minimum of 60 sessions of activity-based locomotor training/therapy at Frazier Rehab Exclusion Criteria: - botox use within past 3 months; - current baclofen use - unhealed fracture - any other medical complication limiting participation in the assessments and/or activity-based locomotor training; - prior surgery for scoliosis; - congenital SCI - total ventilator dependence

Study Design


Related Conditions & MeSH terms


Intervention

Device:
Transcutaneous Spinal Stimulation
Safety and feasibility will be monitored during transcutaneous spinal stimulation in children with spinal cord injury

Locations

Country Name City State
United States Kentucky Spinal Cord Injury Res Center, University of Louisville Louisville Kentucky

Sponsors (2)

Lead Sponsor Collaborator
University of Louisville National Center of Neuromodulation for Rehabilitation

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Incidence of skin irritation Skin color, particularly change in skin color to pink indicating irritation in the location of the stimulating electrode placement will be assessed prior to stimulation experiments and immediately after; incidence of pink- or redness or irritation and time (minutes-days) to dissipation will be recorded. 1 week for Aim 1, 9 weeks for Aim 2
Primary Faces Pain Scale-Revised (scale 0-10) Faces Pain Scale - Revised is a self-report measure of pain intensity developed for children (C.L. Hicks et al. Pain 93 (2001). It will be used to score the sensation of pain on 0 (min - no pain)-to-10 (max - worst pain ever) metric. The scale depicts 6 facial expressions: first - face with a neutral expression corresponds to pain score of 0, next facial expression is scored as 2, etc. The faces scale will be presented to the participant (ages 3-8) prior to the experiment for baseline measurement, during stimulation and following the experiment. 1 week for Aim 1, 9 weeks for Aim 2
Primary Visual Analog Scale (0-10) To assess pain in the participants ages 8 and above, Visual Analog Scale (self-reported measure) will be presented with 0 corresponding to no pain and 10 corresponding to the "worst pain ever"; the scale will be presented at baseline measurement, during stimulation and following the experiment. 1 week for Aim 1, 9 weeks for Aim 2
Primary Blood pressure continuous beat-by-beat blood pressure (mmHg) recordings will be made using Finapress finger cuff system for 5 minutes prior to and 5 minutes immediately following stimulation while the child is sitting; Brachial arm blood pressure will be periodically measured during stimulation (mmHg).
systolic and diastolic blood pressure values will be compared with the established norms for typically developing children (age and height matched);
1 week for Aim 1, 9 weeks for Aim 2
Primary number of requests to stop the stimulation Number of participants requesting (or number of request per participant within experimental sessions) to stop stimulation due to pain, fatigue or any other reason (documented) 1 week for Aim 1, 9 weeks for Aim 2
Primary Angular excursions of trunk during trunk control assessments trunk kinematics (degrees of flexion/extension) in cervical, thoracic and lumbar regions; 3 days for Aim 1, 9 weeks for Aim 2
Secondary Heart rate heart rate (beats per minute) will be continuously monitored and recorded using 3-lead ECG electrocardiogram.
The slope and correlation coefficient between beat-by-beat blood pressure and R-R intervals (ms) (measured from ECG) for 5 minutes prior to and 5 minutes immediately following stimulation will be used to assess spontaneous baroreflex sensitivity, indication of autonomic regulation of the cardiovascular function
1 week for Aim 1, 9 weeks for Aim 2
Secondary Compliance rate Compliance - number of sessions missed and reason, willingness to continue participation. 1 week for Aim 1, 9 weeks for Aim 2
Secondary Center of pressure displacement during trunk control assessment the distance (mm) of the center of pressure displacement will be measured in mediolateral; anterior -posterior directions during reaching tasks while the participant is sitting on the force plate 1 week for Aim 1, 9 weeks for Aim 2
See also
  Status Clinical Trial Phase
Active, not recruiting NCT06321172 - Muscle and Bone Changes After 6 Months of FES Cycling N/A
Completed NCT03457714 - Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
Recruiting NCT05484557 - Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury N/A
Suspended NCT05542238 - The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Not yet recruiting NCT05506657 - Early Intervention to Promote Return to Work for People With Spinal Cord Injury N/A
Recruiting NCT03680872 - Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System N/A
Recruiting NCT04105114 - Transformation of Paralysis to Stepping Early Phase 1
Completed NCT04221373 - Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation N/A
Completed NCT00116337 - Spinal Cord Stimulation to Restore Cough N/A
Completed NCT03898700 - Coaching for Caregivers of Children With Spinal Cord Injury N/A
Recruiting NCT04883463 - Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury N/A
Active, not recruiting NCT04881565 - Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES) N/A
Completed NCT04864262 - Photovoice for Spinal Cord Injury to Prevent Falls N/A
Recruiting NCT04007380 - Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI N/A
Active, not recruiting NCT04544761 - Resilience in Persons Following Spinal Cord Injury
Completed NCT03220451 - Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients N/A
Terminated NCT03170557 - Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation N/A
Recruiting NCT04811235 - Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial N/A
Recruiting NCT04736849 - Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury N/A