Clinical Trials Logo

Clinical Trial Summary

The SciExVR study will evaluate the potential benefit of autologous bone marrow derived stem cells (BMSC) in the treatment of spinal cord injury with evidence of impaired motor or sensory function. The treatment consists of bilateral paraspinal injections of the BMSC at the level of the injury as well as superior and inferior to that spinal segment followed by an intravenous injection and intranasal placement. Patients undergoing BMSC treatment may also be assigned to use of exoskeletal movement (or equivalent) or virtual reality visualization (or equivalent) to augment upper motor neuron firing and/or receptivity of the sensory neurons. http://mdstemcells.com/sciexvr/


Clinical Trial Description

The Stem Cell Spinal Cord Injury Exoskeleton and Virtual Reality (SciExVR) study is based on the progress that researchers have made treating spinal cord injury (SCI) with bone marrow derived stem cells (BMSC). While major improvements have remained elusive with other approaches, modest benefits have been achieved. The use of subarachnoid BMSC provided via intrathecal injection has resulted in improvements for certain sensory and bladder functions. Exoskeleton treatment has shown certain benefits in sensory, bowel and bladder function. Intravenous (IV) BMSC have benefited stroke and other central nervous system damage. In the sponsor's concomitant Neurologic Stem Cell Treatment (NEST) study for general neurologic disease, benefit has been shown by combining IV with intranasal BMSC. The SciExVR study uses paraspinal injections- meaning the BMSC are placed adjacent to the spinal nerves which enter the spinal canal through the intervertebral foramen of the vertebral bodies. The BMSC will be placed at the level of the injury on both sides of the spine as well as approximately two segments above and two segments below. The investigators believe this will allow entry into the spinal tissue at the injury site as well as to the injured upper motor neuron pathways; lower motor neurons which may be injured; sensory pathways; dorsal root ganglia at and below the site and autonomic ganglia. Placement in the paraspinal tissue may extend the time that BMSC have to proliferate at, above and below the vicinity of the spinal cord injury and interact with damaged cells in the spinal cord, spinal roots, spinal nerves and paravertebral ganglion. Potential benefits of these interactions include BMSC mitochondrial transfer to target cells, secretion of mRNA increasing target cell activity, secretion of nerve growth factor and other neurotrophic factors beneficial to nerve regrowth. Increased proliferation and contact time may increase neuronal transdifferentiation of BMSC to neurons and/or neuroglia. Following paraspinal injections the patient receives the remaining BMSC intravenously (IV) and also topically intranasally. BMSC given IV may enter the central nervous system through the paraventricular organs in the brain to potentially reach the ascending and descending pathways, thalamus, sensory cortex, motor cortex and circulate through the cerebral spinal fluid (CSF). Intranasal provides access through the axons of the Trigeminal (V) cranial nerves and entry into the brain at the level of the pons with similar opportunity to move through the tissues. BMSC are separated from bone marrow obtained from the posterior iliac crest with a single aspiration on each side. The procedure is performed under general or MAC anesthesia at the fully licensed surgical center so there is no discomfort in performing the procedure. The BMSC are separated from the aspirate using an FDA cleared class II device. After BMSC treatment patients who are in Arm 1 simply follow up with their own neurologists at 1,3,6 and 12 months. Those in Arm 2 require similar follow up and pursue treatment at centers that can provide exoskeletal stimulation or physical therapy equivalent. Exoskeleton devices move the limbs of the patient to provide stimulation to the muscles in a self directed fashion but similar to physical therapy that is often performed for SCI. The investigators believe that Arm 2 may provide stimulation of the upper and lower motor neurons and sensory receptors such as exteroceptors and proprioceptors which may, in the presence of BMSC, assist in regeneration or reactivation of the spinal cord pathways. Patients in Arm 3 require similar follow up and may use Virtual Reality headsets or equivalent to increase visualization of movement of the lower extremities and/or sensory feedback. This may also help stimulate the upper and lower motor neurons and sensory receptors. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03225625
Study type Interventional
Source MD Stem Cells
Contact
Status Enrolling by invitation
Phase N/A
Start date July 1, 2017
Completion date July 2026

See also
  Status Clinical Trial Phase
Active, not recruiting NCT06321172 - Muscle and Bone Changes After 6 Months of FES Cycling N/A
Completed NCT03457714 - Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
Recruiting NCT05484557 - Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury N/A
Suspended NCT05542238 - The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Not yet recruiting NCT05506657 - Early Intervention to Promote Return to Work for People With Spinal Cord Injury N/A
Recruiting NCT04105114 - Transformation of Paralysis to Stepping Early Phase 1
Recruiting NCT03680872 - Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System N/A
Completed NCT04221373 - Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation N/A
Completed NCT00116337 - Spinal Cord Stimulation to Restore Cough N/A
Completed NCT03898700 - Coaching for Caregivers of Children With Spinal Cord Injury N/A
Recruiting NCT04883463 - Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury N/A
Active, not recruiting NCT04881565 - Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES) N/A
Completed NCT04864262 - Photovoice for Spinal Cord Injury to Prevent Falls N/A
Recruiting NCT04007380 - Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI N/A
Active, not recruiting NCT04544761 - Resilience in Persons Following Spinal Cord Injury
Terminated NCT03170557 - Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation N/A
Completed NCT03220451 - Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients N/A
Recruiting NCT04811235 - Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial N/A
Recruiting NCT04736849 - Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury N/A