View clinical trials related to Spinal Cord Injuries.
Filter by:To determine the effects of chiropractic care on spasticity, functional outcomes and quality of life in Spinal Cord Injuries in adults.
This is a randomized, triple-blind (subjects, Investigators, and Sponsor blinded), placebo-controlled Single Ascending Dose (SAD) and Multiple Ascending Dose (MAD) study to evaluate the safety and tolerability of NVG-291 administered by subcutaneous injection daily in healthy female participants. The trial is split into three parts, starting with Part 1 (SAD), then Part 2 (MAD - post-menopausal Females), and finally Part 3 (MAD - males and premenopausal females). In Part 1 (SAD), participants receive 1 dose on 1 day only and in Parts 2 and 3, participants receive 1 dose every day for 14 days.
This project will focus on a novel approach to stabilizing blood pressure (BP) during inpatient rehabilitation after acute SCI. After SCI, people have unstable blood pressure, ranging from too low (orthostatic hypotension) to too high (autonomic dysreflexia). Unstable BP often interferes with performing effective physical rehabilitation after SCI. A critical need exists for the identification of safe, practical and effective treatment options that stabilize BP after traumatic SCI. Transcutaneous Spinal Cord Stimulation (TSCS) has several advantages over pharmacological approaches: (1) does not exacerbate polypharmacy, (2) can be activated/deactivated rapidly, and (3) can be applied in synergy with physical exercise. The study team is asking the key question: "What if applying TSCS earlier after injury could prevent the development of BP instability?" To facilitate adoption of TSCS for widespread clinical use, the study team plans to map and develop a parameter configuration that will result in an easy to follow algorithm to maximize individual benefits, while minimizing the burden on healthcare professionals. This project will provide the foundational evidence to support the feasible and safe application of TSCS in the newly injured population, thereby overcoming barriers to engagement in prescribed inpatient rehabilitation regimens that are imposed by BP instability.
The objective of the proposed study is to conduct the first ever prospective, dose-exploration trial to test the feasibility of early administration of gabapentin as an intervention for neurorecovery. This research project falls under the Intervention Development stage of research as the primary goal is to assess the feasibility of conducting a well-designed intervention efficacy study in the future.
The purpose of this study is to evaluate the effectiveness and safety of SCONE neuromodulation therapy after 12 weeks of therapy in comparison to inactive sham control in improving symptoms of Neurogenic Lower Urinary Tract Dysfunction
This study will use a randomized controlled design with an active attention control group to evaluate an intervention intended to reduce social isolation and loneliness in persons with SCI/D. The intervention, Caring Connections, is a peer-based intervention which is important because peers with SCI/D play an important role in improving quality of life, mental health, and social health in persons with SCI/D.
The LIFT Home Study is an observational, single-arm study designed to assess the safety of non-invasive electrical spinal stimulation (ARC Therapy) administered by the LIFT System to treat upper extremity functional deficits in people with chronic tetraplegia.
The purpose of this study is to assess the efficacy of non-invasive (transcutaneous) closed-loop electrical spinal cord stimulation for recovery of upper limb function (Aim 1) and spasticity (Aim 2) following spinal cord injury.
This study is a qualitative study exploring the facilitators to physical and vocational rehabilitation and also explores the barriers in empowering individuals with paraplegia
Gait impairment in people with acquired brain injury (ABI) and spinal cord injury (SCI) can be very heterogeneous. For this reason, STELO has been developed: a new concept of exoskeleton based on modular technology for gait assistance. It allows a personalised configuration according to the functional capacity of each patient, as the therapist can choose which robotic joints to use depending on the therapeutic goal and on the patient recovery phase. The objective is to analyse the usability of the STELO modular exoskeleton in people with ABI and SCI.