View clinical trials related to Spinal Cord Injuries.
Filter by:The purpose of this research study is to compare the effect of two different types of education and support programs for partner caregivers of people with spinal cord injury (SCI).
The main objective of this project is to measure the increase in aerobic physical and metabolic capacities with a 6-month training on a rower assisted by electrostimulation of lower limbs in a population of adults with traumatic paraplegia.
This study intends to evaluate the safety and exploratory efficacy of transplantation therapy using neural precursor cells (PSA-NCAM(+) NPC) derived from the human embryonic stem cell line for the treatment of paralysis and other related symptoms from sub-acute spinal cord injury.
The study involves the 'first-in-human' evaluation of a novel optical sensor which uses near-infrared spectroscopy (NIRS) technology to assess oxygenation and hemodynamics of the injured spinal cord. The NIRS sensor is laid on top of the dura, at the site of the SCI, and emits near-infrared light signals into the cord to measure tissue oxygenation and tissue hemodynamics in real-time. Our testing of this novel NIRS sensor in patients with acute SCI represents the first step in translating this technology for human use.
Locomotor training is often used with the aim to improve corticospinal function and walking ability in individuals with Spinal Cord Injury. Excitingly, the benefits of locomotor training may be augmented by noninvasive electrical stimulation of the spinal cord and enhance motor recovery at SCI. This study will compare the effects of priming locomotor training with high-frequency noninvasive thoracolumbar spinal stimulation. In people with motor-incomplete SCI, a series of clinical and electrical tests of brain and spinal cord function will be performed before and after 40 sessions of locomotor training where spinal stimulation is delivered immediately before either lying down or during standing.
The purpose of this study is to investigate if a person with weakness or paralysis in one or both arms, can use the NuroSleeve combined powered arm brace (orthosis) and muscle stimulation system to help restore movement in one arm sufficient to perform daily activities. This study could lead to the development of a product that could allow people with arm weakness or arm paralysis to use the NuroSleeve and similar devices to improve arm health and independent function.
Spinal cord injury (SCI) is a devastating health problem for tens of thousands of military personnel, Veterans and civilians annually. Many persons with SCI must use a wheelchair for their entire life. A new scientific breakthrough called "lumbosacral epidural stimulation" or "ES" can help people with SCI to stand, step and even walk again. At present, for ES to work, people must train with a specialized treadmill that requires several other qualified personnel to train them, which makes it hard for many people with SCI to benefit from this technology. On the other hand, there are wearable "robot suits" that can be used with ES, which would make it easier to use. Our research team has already used this "ES Robot Suit" for 3 months in one person with tetraplegia and showed remarkable improvements in motor control. Furthermore, the investigators are aiming to enhance overground motor recovery by adding 6 months of resistance training (RT). The addition of RT will likely to enhance muscle quality as indicated by increasing lean mass, peak torque and increase sensory flux to the central nervous system. Other additional benefits may include improvement in cardiovascular profile and bladder functions. The specific objectives of the current proposal are to compare the impact of EAW+ES following improving lower extremity muscle quality compared to those who will only undergo EAW+ ES without conducting RT on motor recovery, cardio-metabolic health and bladder control in persons with complete SCI. At the conclusion of the current proposal, the work will be readily available for translation into clinical setting to serve Veterans and Civilian survivors with SCI.
The FIRST project compares the dose of robotic gait training (RGT) with usual care gait training for patients with spinal cord injury (SCI) undergoing rehabilitation at Baylor Scott & White Institute for Rehabilitation (BSWIR).
The study is designed to determine whether hemorrhage within the injured spinal cord is influenced by mean arterial pressure (MAP) augmentation with vasopressors and by venous thromboembolism (VTE) prophylaxis with anticoagulants in the first two weeks following a traumatic spinal cord injury (tSCI).
This is an early feasibility trial to determine whether transcutaneous neuromuscular electrical stimulation, with or without transcutaneous spinal cord stimulation, using an investigational neurostimulation device improves functional arm/hand movements in individuals with paralysis or paresis due to a spinal cord injury or stroke and improves functional arm/hand or leg/foot movements in individuals with paralysis or paresis due to other brain or nerve injuries. In this study, eligible individuals that agree to participate will be asked to attend up to 5 study sessions a week for 1 year (depending on participant availability), with each session lasting up to 4 hours. At the first study session, participants will have their demographic information collected, vital signs assessed, and have measurements performed of their limbs and torso, as appropriate. They will also undergo clinical evaluations and tests to assess their current functional movement and sensation capabilities. During subsequent study sessions, participants will undergo many tasks designed to improve functional movements in paralyzed limbs. Specifically, participants will receive neuromuscular electrical stimulation to the limb(s) and/or electrical stimulation to the spinal cord to evoke specified movements. The stimulation parameters and locations on the spinal column and/or limb(s) that evoke specific movements will be noted. The movements will be assessed with visual inspection, electromyography, and/or sensors. The clinical evaluations and tests to assess functional movement and sensation capabilities will be repeated throughout the study and at the last study session to assess for functional improvements compared to the first study session. Upon completion of these study sessions, the individual's participation in the study is considered complete.