View clinical trials related to Spinal Cord Injuries.
Filter by:The purpose of this study is to determine how combining bouts of low oxygen, transcutaneous spinal cord stimulation, and walking training may improve walking function for people with chronic spinal cord injury.
Spinal cord injury is a multi-sensory, motor and autonomic dysfunction, caused by various types of acute and chronic central nervous system injuries. And it will affect patient's ability to live normally and return to society. Due to lack of physical activity and psychological and environmental factors, the feces remain in the intestine for too long, and there will be excessive water absorption and lead to dryness and difficulty in excretion and it will be constipation. Chinese medicine, acupuncture and acupressure are the treatments of constipation in Traditional Chinese Medicine. Acupressure is a non- invasive intervention which is easy to learn and apply. We have carried out a number of studies on spinal cord injury rehabilitation support and acupressure to solve chronic problems such as constipation and anxiety. And this study aims to investigate the effects of acupressure combined with nursing intervention on constipation and quality of life in community-dwelling spinal cord injury patients.
Spinal cord injury (SCI) is a devastating life event with long term consequences both physically and mentally. SCI is defined as either complete or incomplete according to the International Standards of the Neurological Classification of SCI. The primary consequence of a SCI is paralysis/partial paralysis affecting the person's ability to independently functioning in everyday life e.g. in and out of bed, sit to stand and walking. To regain the ability to transfer and walk the most important prerequisite is to rebuild as much strength as possible in the lower extremities. The optimal training paradigm to increase strength in partial paralysed muscles is unclear. Rehabilitation robots are upcoming methods to treat sensorimotor deficits after SCI. The rehabilitation robot ROBERT might contribute to enhance muscle strength for people with very weak strength following an incomplete SCI. The overall objective of this Ph.D project is to investigate the feasibility and effect size of a muscle strength training intervention assisted by ROBERT® for patients with SCI and severe paresis (muscle strength 1-3 in hip flexion).
The purpose of this study is to evaluate the feasibility and acceptability of a 6-week app-guided Mindfulness meditation training (MM) intervention and health education (active control) condition in people with spinal cord injury (SCI) who have chronic pain and to examine the feasibility of data collection procedures
The purpose of this study is to develop and test the hardware and software components of the MyHand-SCI device to assist with hand function for individuals with C6-C7 spinal cord injury.
Depression is a leading cause of disability worldwide and is more commonly seen in individual's post-spinal cord injury (SCI) than in the general population. Depression post-SCI impacts an individuals' quality of life and recovery. It has been reported that among Veterans with an SCI, those without depression live longer than those with depression. Thus, depression must be treated appropriately. Repetitive transcranial magnetic stimulation (rTMS) is an FDA-approved treatment for depression, but dosing is based on a motor response or movement in the thumb. Over half of individuals with SCI have some degree of arm or hand impairment, so these individuals might not be eligible for rTMS, or they may receive the wrong dose. This study proposes clinical trial in individuals with depression post-SCI to assess the anti-depressant effect of a novel technique to dose rTMS that does not require a motor response in the thumb. By gaining a better understanding of the application of rTMS for depression post-SCI, the investigators aim to advance the rehabilitative care of Veterans.
The aims of this proposal are to: 1) investigate whether individuals with spinal cord injury (SCI) demonstrate cardiac autonomic, cerebrovascular, and cognitive dysfunctions compared to non-injured age- and sex-matched controls in the following conditions: supine rest and head-up tilt/face-cooling test; 2) examine if autonomic completeness/ incompleteness, physical activity, and psychological distress are predictors for dysfunctions during supine rest and head-up tilt/face cooling conditions in SCI individuals; 3) examine if one bout of moderate-intensity aerobic exercise temporarily improves cardiac autonomic and cerebrovascular functions and thereby improves cognition when in supine rest and head- up tilt/face cooling conditions. The study will include an initial visit and an experimental visit to our lab. Three groups of participants will be included in this study: Group 1, SCI with acute exercise; group 2, SCI with rest-control; and group 3, age- and sex-matched non-injured individuals. Cardiovascular variables, such as heart rate variability, blood pressure variability, and cerebrovascular variables, such as cerebral blood flow velocity and oxygenated hemoglobin, and cognitive performance will be examined. The investigator hypothesizes that individuals with SCI will have impaired cardiac autonomic, cerebrovascular, and cognitive functions compared to the non-injured controls, and an acute exercise can improve those functions. Autonomic completeness/incompleteness, physical activity, and psychological distress are significant factors that predict cardiac autonomic, cerebrovascular, and cognitive functions in individuals with SCI.
It is estimated that 1,275,000 people in the United States alone live with spinal cord injury, including around 100,000 Veterans with spinal cord injury, making the V.A. the largest integrated health care system in the world for spinal cord injuries injury care. New therapies are needed to prevent the morbidities and mortalities associated with the high prevalence of respiratory disorders in Veterans with spinal cord injury. The current research project and future studies would set the base for developing innovative therapies for this disorder. This proposal addresses a new therapeutic intervention for sleep apnea in spinal cord injury. The investigators hypothesized that daily hypercapnia treatments improve respiratory symptoms and alleviate sleep apnea in patients with chronic spinal cord injury. The investigators will perform a pilot study to examine the impact of daily hypercapnia treatments for-two week durations among Veterans with spinal cord injury. The investigators believe that this novel approach to treating sleep apnea and will yield significant new knowledge that improves the health and quality of life of these patients.
Spinal cord injury (SCI) is a neurological disorder that leads to "partial or complete loss of people's motor and/ or sensory function below the level of the injury". The PPI intervention group participants will indicate significantly greater improvements when compared with those in control group in the minutes of performing the moderate-to-rigorous physical activity, depression, chronic pain and mindfulness skills and quality of life at post-intervention, and three months follow-up. The use of psychological motivational interviewing and online face-to-face meetings will be good modalities for the people with SCI to overcome the barriers of not having face-to-face interactions and transportation problems. And the intervention would be feasible and improve SCI people's physical inactivity, depression and chronic pain as to step up the control of the modifiable risk factors for non-communicable diseases.
Spinal cord injury following posterior decompression in patients suffering from chronic, cervicothoracic spinal cord compression is a known complication with multiple etiologies. Currently, intraoperative neuromonitoring (IONM) remains the gold standard for predicting and preventing post-operative deficits from these procedures. However, there is a paucity in the field of spine surgery for further, non-invasive biomarkers that can help detect and prognosticate the degree of spinal cord injury intraoperatively. Contrast enhanced ultrasound (CEUS) is a radiation free imaging modality that utilizes nanobubble technology to allow for visualization of the macro- and microvascular architecture of soft tissue structures. Despite being currently approved for the use in hepatology and cardiology, it has remained absent from the field of spinal cord injury. The study team aims to evaluate and quantify micro- and macrovascular changes that lead to areas of hyper-perfusion as well as areas of ischemia intraoperatively in patients that undergo elective cervicothoracic posterior decompression for chronic compression. In addition, the study team aims to assess the efficacy of CEUS in detecting microvascular changes that correlate with IONM changes and predicting degree and recovery of post-operative neurologic deficits from intraoperative spinal cord injury. The study team hypothesizes that following decompression, subjects will have detectable levels of microvascular changes causing areas of hypoperfusion and reperfusion injury. Second, the study team hypothesizes that these perfusion changes will correlate with intraoperative neuromonitoring changes and can predict and prognosticate the degree of post-operative neurologic injury.