View clinical trials related to Spinal Cord Injuries.
Filter by:The objectives of the study are to evaluate a 4-week mixed training paradigm consisting of explosive strength training and balance perturbation training efficacy on balance control during standing and locomotion, and to understand the mechanisms of neuroplasticity that would improve sensorimotor integration at supraspinal and spinal levels.
The objectives of the study are to evaluate trunk task-oriented training combined with function electrical stimulation (FES/T-TOT) efficacy on sitting balance and functional independence, and to understand the mechanisms of neuroplasticity that would improve functional independence following FES/T-TOT in individuals with spinal cord injury.
While there are a number of prospective studies evaluating powered exoskeletons in SCI patients, to date, not a single well-designed, randomized clinical trial has been published. However, there is evidence for beneficial effects of over-ground exoskeleton therapy on walking function post-intervention from a meta-analysis on non-randomized, uncontrolled studies. Functional electrical stimulation (FES), on the other hand, is a common and established method for the rehabilitation of persons with SCI and has been demonstrated to be beneficial in, e.g., improving muscle force, power output and endurance. Combining FES and overground robotic therapy within the same therapy session could potentially merge and potentiate the effects of each separate treatment, making it a very powerful and efficient therapy method. Up to date, however, comparative studies evaluating benefits of this combined approach (i.e., powered exoskeleton and FES) to robotic therapy without FES are missing.
Injuries affecting the central nervous system may disrupt the cortical pathways to muscles causing loss of motor control. Nevertheless, the brain still exhibits sensorimotor rhythms (SMRs) during movement intents or motor imagery (MI), which is the mental rehearsal of the kinesthetics of a movement without actually performing it. Brain-computer interfaces (BCIs) can decode SMRs to control assistive devices and promote functional recovery. Despite rapid advancements in non-invasive BCI systems based on EEG, two persistent challenges remain: First, the instability of SMR patterns due to the non-stationarity of neural signals, which may significantly degrade BCI performance over days and hamper the effectiveness of BCI-based rehabilitation. Second, differentiating MI patterns corresponding to fine hand movements of the same limb is still difficult due to the low spatial resolution of EEG. To address the first challenge, subjects usually learn to elicit reliable SMR and improve BCI control through longitudinal training, so a fundamental question is how to accelerate subject training building upon the SMR neurophysiology. In this study, the investigators hypothesize that conditioning the brain with transcutaneous electrical spinal stimulation, which reportedly induces cortical inhibition, would constrain the neural dynamics and promote focal and strong SMR modulations in subsequent MI-based BCI training sessions - leading to accelerated BCI training. To address the second challenge, the investigators hypothesize that neuromuscular electrical stimulation (NMES) applied contingent to the voluntary activation of the primary motor cortex through MI can help differentiate patterns of activity associated with different hand movements of the same limb by consistently recruiting the separate neural pathways associated with each of the movements within a closed-loop BCI setup. The investigators study the neuroplastic changes associated with training with the two stimulation modalities.
Both GLP-2 and GIP reduce bone resorption (measured as CTX) in healthy persons. In this study, we will investigate whether GLP-2 and GIP is reducing CTX in individuals with spinal cord injury.
Cardiovascular disease has become the leading cause of death in the spinal cord injury population. Increased reliance on the renin-angiotensin-aldosterone system (RAAS) is believed to decrease falls in blood pressure when moving from a laying down position to upright; however, findings in the general population link the RAAS with remodeling and restructuring of the arterial walls. Therefore, intervention to stabilize and normalize blood pressure should be a priority in individuals with spinal cord injury who have low blood pressure. Advances in stimulation on the skin of the spinal cord offer an approach to restore cardiovascular control and improve blood pressure regulation; however, electrode placement and stimulation parameters needed to increase blood pressure are not well understood. Therefore, the aim of the study is to identify placement of electrodes on the skin, and frequency and amplitude of the stimulation to regulate blood pressure.
The objective of the proposed work is to determine whether administration for 12 months of romosozumab (evenity) followed by 12 months of denosumab (prolia) will maintain bone mass at the knee in subjects with chronic SCI.
Respiratory motor control deficit is the leading cause of morbidity and mortality in patients with spinal cord injury. The long-term goal of this NIH-funded study is to develop a rehabilitation strategy for respiration in patients with spinal cord injury as a standard of care. Respiratory function in patients with chronic spinal cord injury can be improved by using inspiratory-expiratory pressure threshold respiratory training protocol. However, the effectiveness of this intervention is limited by the levels of functional capacity preserved below the neurological level of injury. Preliminary data obtained for this study demonstrate that electrical spinal cord stimulation applied epidurally at the lumbar level in combination with respiratory training can activate and re-organize spinal motor networks for respiration. This study is designed to investigate respiratory motor control-related responses to epidural spinal cord stimulation alone and in combination with respiratory training. By characterization of respiratory muscle activation patterns using surface electromyography in association with pulmonary functional and respiration-related cardiovascular measures, the investigators expect to determine the specific stimulation parameters needed to increase spinal excitability below level of injury to enhance responses to the input from supraspinal centers that remain after injury and to promote the neural plasticity driven by the respiratory training. This hypothesis will be tested by pursuing two Specific Aims: 1) Evaluate the acute effects of epidural spinal cord stimulation on respiratory functional and motor control properties; and 2) Evaluate the effectiveness of epidural spinal cord stimulation combined with respiratory training.
The purpose of the study is to assess the effects of exoskeleton training on neurogenic bowel disorders in spinal cord injury/ disease.
Spinal cord associative plasticity (SCAP) is a combined cortical and spinal electrical stimulation technique developed to induce recovery of arm and hand function in spinal cord injury. The proposed study will advance understanding of SCAP, which is critical to its effective translation to human therapy. The purpose of the study is to: 1. Determine whether signaling through the spinal cord to the muscles can be strengthened by electrical stimulation. 2. Improve our understanding of the spinal cord and how it produces movement. 3. Determine whether spinal surgery to relieve pressure on the spinal cord can improve its function. Aim 1 is designed to advance mechanistic understanding of spinal cord associative plasticity (SCAP). Aim 2 will determine whether SCAP increases spinal cord excitability after the period of repetitive pairing. In rats, SCAP augments muscle activation for hours after just 5 minutes of paired stimuli. Whereas Aims 1 and 2 focused on the effects of paired stimulation in the context of uninjured spinal cord, Aim 3 assesses whether paired stimulation can be effective across injured cord segments. Aim 3 will incorporate the experiments from Aim 1 and 2 but in people with SCI, either traumatic or pre-operative patients with myelopathy in non-invasive experiments, or targeting myelopathic segments in intraoperative segments.