View clinical trials related to Spinal Cord Compression.
Filter by:Background: Spinal metastatic disease constitute a serious clinical problem in oncology. Bones are the third most common organ where metastases are located, and the spine is the place where they are most often located. Due to the complexity of the clinical problem, metastatic spine disease remains of interest to many medical specialties: neurosurgery, orthopedics, clinical oncology, radiotherapy and rehabilitation. With the development of modern diagnostic methods and wider access to them, the demand for neurosurgical treatment in this group of patients is growing. Surgical treatment is undertaken in cases of spinal cord compression, instability, spinal deformation or pain that is resistant to radiotherapy. The standard treatment in most cases is posterior instrumentation of the spine using titanium pedicle screws. Unfortunately, these systems cause numerous artifacts in diagnostic imaging, both in CT and MRI. These distortions make it difficult to plan radiotherapy and determine the optimal dose that would avoid healthy tissues. Moreover, artifacts could make difficult postoperative follow-ups aimed at assessing local recurrence. The solution to these problems is the use of radiolucent implants. There are systems based on carbon fibers embedded in PEEK which do not cause typical artifacts for titanium implants. Study plan: The open, three-arm, prospective randomized study is planned to involve 226 patients with metastatic disease of the spine, with a known or undiagnosed primary site. Patients will be qualified for 2 types of interventions. The first one includes treatment with stereotactic radiotherapy (SBRT) in the first stage of treatment and early instrumentation of the spine with titanium implants. The second type of intervention includes patients qualified for surgical treatment using spine stabilization and postoperative SBRT. Patients within this arm will be randomized into two groups differing in the type of material the instrumentation is made of: carbon-PEEK or titanium. The study group will be patients stabilized with carbon implants, and the control group will be those who will have titanium implants. Study population: The study includes adult patients with metastatic spine disease, with a known or unknown primary tumor, qualified for SBRT and surgical treatment. Assumed effects: It is assumed that the treatment proposed in the project would extend progression free survival by several months or achieve local control in an additional 5% of patients. Moreover, by improving the quality of imaging, earlier diagnosis of local recurrences and implementation of appropriate locoregional treatment would be possible.
To learn about the safety of a procedure called cord dose escalated spine stereotactic radiosurgery (CDE-SSRS) in patients with MESCC.
Quantitative Magnetic Resonance Imaging Parameters as Predictors of Outcome for Non-Myelopathic Degenerative Cervical Cord Compression: A Longitudinal Study
The main purpose of this study is to see if treating cancer with the magnetic resonance imaging guided adaptive radiotherapy (MRIdian) can control patient's tumor and eliminate the need for surgery used to treat nerves in the spine flattened by pressure (compressed).
Every year, thousands of Canadians are diagnosed with degenerative cervical myelopathy (DCM), a form of non-traumatic injury caused by spinal cord compression in the neck. While DCM causes a range of symptoms, one of the most disabling is loss of hand dexterity. Surgical decompression is standard treatment for DCM, but reduced dexterity often remains. The investigators have developed a portable, easy-to-use dexterity assessment tool for measuring hand dexterity. Hand function is often assessed using tools incapable of measuring subtle changes in function, limiting a clinician's ability to monitor progression of or recovery from a disease over time. The hope is that if subtle changes in function are identified early, leading to an early DCM diagnosis and treatment, this may prevent patients from experiencing a greater loss of hand function. The goals of this study are to determine the relationship between dexterity and myelopathy severity, as well as to establish the validity and reliability of the dexterity tool. This will be done by assessing dexterity using the dexterity tool in DCM patients (to determine the relationship between disease severity and dexterity, and measure validity) and healthy participants (to establish reliability).
Spinal cord injury following posterior decompression in patients suffering from chronic, cervicothoracic spinal cord compression is a known complication with multiple etiologies. Currently, intraoperative neuromonitoring (IONM) remains the gold standard for predicting and preventing post-operative deficits from these procedures. However, there is a paucity in the field of spine surgery for further, non-invasive biomarkers that can help detect and prognosticate the degree of spinal cord injury intraoperatively. Contrast enhanced ultrasound (CEUS) is a radiation free imaging modality that utilizes nanobubble technology to allow for visualization of the macro- and microvascular architecture of soft tissue structures. Despite being currently approved for the use in hepatology and cardiology, it has remained absent from the field of spinal cord injury. The study team aims to evaluate and quantify micro- and macrovascular changes that lead to areas of hyper-perfusion as well as areas of ischemia intraoperatively in patients that undergo elective cervicothoracic posterior decompression for chronic compression. In addition, the study team aims to assess the efficacy of CEUS in detecting microvascular changes that correlate with IONM changes and predicting degree and recovery of post-operative neurologic deficits from intraoperative spinal cord injury. The study team hypothesizes that following decompression, subjects will have detectable levels of microvascular changes causing areas of hypoperfusion and reperfusion injury. Second, the study team hypothesizes that these perfusion changes will correlate with intraoperative neuromonitoring changes and can predict and prognosticate the degree of post-operative neurologic injury.
Metastatic spinal cord compression (MSCC) is a serious complication to metastatic cancer and when diagnosed life expectancy is short. Treatment is palliative radiotherapy (RT). Early esophageal toxicity is underreported but can seriously impact quality of life (QoL). The aim of the ESO-SPARE trial is to investigate if esophagus sparing RT can decrease patient reported esophageal toxicity without compromising ambulatory function or increase other toxicities. 200 patients with MSCC in the thoracic or cervical spine referred for RT will be randomized to either standard or esophagus/pharynx sparing RT. Subsequently participants will be followed with PROM (Patient Reported Outcome Measures) for 9 weeks. PROM-CTCAE questionnaires on upper GI toxicity and pain will be collected daily for 5 weeks and weekly for 4 weeks. Questionnaires evaluating QoL and physical function will be collected weekly for 9 weeks.
The purpose of this research is to combine two complementary modes of treatment, spinal interstitial laser ablation and stereotactic spine radiosurgery (SSRS) for the treatment for spinal tumors near the spinal cord with an objective to improve tumor control, improve pain control, preserve function, and improve quality of life. We will also assess how effective these combined modes of treatment are in patients with spinal metastasis with an epidural component.
The aim of this study is to observe or not a reduction in the consumption of morphine within 72 hours of the realization of an erector spinae plane block when preparing for a non-instrumented spine surgery.
To date, no consensus exists on which anterior surgical technique is more cost-effective to treat cervical degenerative disc disease (CDDD). The most commonly used surgical treatment for patients with single- or multilevel symptomatic CDDD is anterior cervical discectomy with fusion (ACDF). However, new complaints of radiculopathy and/or myelopathy commonly develop at adjacent levels, also known as clinical adjacent segment pathology (CASP). It remains unknown to what extent kinematics, surgery-induced fusion and natural history of disease play a role in its development. Anterior cervical discectomy with arthroplasty (ACDA) is thought to reduce the incidence of CASP by preserving motion in the operated segment. ACDA is often discouraged as the implant costs are higher whilst the clinical outcomes are similar to ACDF. However, preventing CASP might be a reason for ACDA to be a more cost-effective technique in the long-term. In this randomized controlled trial patients will be randomized to receive ACDF or ACDA in a 1:1 ratio. Adult patients with single- or multi-level CDDD and symptoms of radiculopathy and/or myelopathy will be included. The primary outcome is cost-effectiveness and cost-utility of both techniques from a societal perspective. Secondary objectives are the differences in clinical and radiological outcomes between the two techniques, as well as the qualitative process surrounding anterior decompression surgery. All outcomes will be measured at baseline and every 6 months till 4 years postoperatively. High quality evidence regarding the cost-effectiveness of both ACDA and ACDF is lacking, to date no prospective trials from a societal perspective exist. Considering the ageing of the population and the rising healthcare costs, the need for a solid clinical cost-effectiveness trial addressing this question is high.