Sickle Cell Disease Clinical Trial
— DREPNANOOfficial title:
Single-center Pilot Study: Nano-rheological Biomarkers for Patients With Sickle Cell Disease (SCD) Versus Control Subjects (Other Constitutional Red Blood Cell Diseases and Healthy Subjects)
Numerous pathologies (sickle cell disease, thalassemia, spherocytosis, etc.) lead to changes in the rheological properties of the blood, in particular via alterations in the deformability of red blood cells. These alterations lead to circulatory complications of which an emblematic example is the sickle cell crisis which manifests itself by microcirculatory occlusions. Several authors suggest that the deformability of erythrocytes is a key parameter for the diagnosis and monitoring of patients. Numerous studies, especially in vitro, show that the mechanical properties of the red blood cell significantly influence its dynamics in flow (blood viscosity, distribution in capillary networks). Moreover, concerning the specific problem of vaso-occlusion, the proportion of the most rigid red blood cells is a determining factor of the probability of occlusion more than the average value of this rigidity which can hide great disparities. There is no clinically usable test to assess the alteration of the fine rheology of the red blood cell in a patient. Functional tests such as ektacytometry require heavy equipment and teams of specialized biologists; this technique is therefore only available in 3 biological reference centers in France. "Mechanical phenotyping" seems to be a potentially simpler and more accessible technique, and has already shown promising prospects in other nosological settings than red blood cell pathologies. Today, there is no specific marker of sickle cell vaso-occlusive crisis, nor marker of severity, that would be useful for pathophysiological understanding but also for clinical management.
Status | Not yet recruiting |
Enrollment | 40 |
Est. completion date | November 2025 |
Est. primary completion date | March 2024 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria for healthy volunteers : 1. Patient age = 18 years 2. With social care protection 3. Living donor recruited for kidney donation with normal blood count Inclusion Criteria for SDC patient : 1. Patient age = 18 years 2. With social care protection 3. SCD patient with documented phenotype: SS, S°, S+, SC, SLepore, SOrab, SDPundjab, ASantilles... with or without specific treatment Inclusion Criteria for patient with a constitutional non-sickle cell disease of the red blood cell, or an acquired red blood cell disease : 1. Patient age = 18 years 2. With social care protection 3. With any of the following conditions : 1. Patient being managed for anemia due to martial deficiency, and prior to oral or intravenous replacement therapy 2. Patient being followed for myeloproliferative syndrome at diagnosis, and prior to any specific treatment (hemodilution or hydroxycarbamide or other specific treatment) 3. A patient with a MCGRE other than a major sickle cell syndrome, whether or not under specific treatment 4. Hemoglobinopathy: transfusion-dependent or independent thalassemias (major or intermediate), thalassemias minor, heterozygous sickle cell trait A/S, other heterozygous hemoglobin variants (C, E, Lepore...), hyperaffine hemoglobin 5. Membrane disorders (hereditary spherocytosis) 6. Canalopathies (stomatocytosis with dehydrated or hyperhydrated erythrocytes, melanesian ovalocytosis...) 7. Enzyme deficiencies (G6PD, PK, GPI...) Exclusion Criteria for all patients: 1. Patient age < 18 years 2. Subject under guardianship, or subject deprived of freedom 3. Linguistic or literacy status not allowing for informed consent despite patient information in "Easy to Read and Understand" format 4. Known history of HIV, HTLV, syphilis, or positive serology and active viral hepatitis B or C. Additional Exclusion Criteria for healthy volunteers : 5. Abnormal blood count, or possible martial deficiency with ferritin levels below 50µg/l, or current treatment with hydroxycarbamide, or transfusion within 4 months prior to inclusion. Additional Exclusion Criteria for SCD patient : 5) Treatment with hydroxycarbamide started less than 6 months ago 6) Anemia with hemoglobin level <60g/l in the absence of cardiorespiratory pathology, <70g/l in pregnancy, or in the presence of cardiorespiratory pathology that may alter the tolerance of anemia. Additional Exclusion Criteria for patient with a constitutional non-sickle cell disease of the red blood cell, or an acquired red blood cell disease : 5) Anemia with hemoglobin level <60g/l, <70g/l in pregnancy, or in the presence of cardio-respiratory pathology that may alter the tolerance of anemia. 6) Diagnosis not finalized (in progress), or uncertain nosological framework, or diagnostic wandering. |
Country | Name | City | State |
---|---|---|---|
n/a |
Lead Sponsor | Collaborator |
---|---|
University Hospital, Grenoble |
Arlet JB. [A new therapeutic era in sickle cell disease]. Rev Med Interne. 2017 Sep;38(9):569-571. doi: 10.1016/j.revmed.2017.05.006. Epub 2017 Jun 16. French. — View Citation
Ataga KI, Kutlar A, Kanter J. Crizanlizumab in Sickle Cell Disease. N Engl J Med. 2017 May 4;376(18):1796. doi: 10.1056/NEJMc1703162. — View Citation
Baez S, Kaul DK, Nagel RL. Microvascular determinants of blood flow behavior and HbSS erythrocyte plugging in microcirculation. Blood Cells. 1982;8(1):127-37. — View Citation
Ballas SK, Barton FB, Waclawiw MA, Swerdlow P, Eckman JR, Pegelow CH, Koshy M, Barton BA, Bonds DR. Hydroxyurea and sickle cell anemia: effect on quality of life. Health Qual Life Outcomes. 2006 Aug 31;4:59. — View Citation
Ballas SK. The Evolving Pharmacotherapeutic Landscape for the Treatment of Sickle Cell Disease. Mediterr J Hematol Infect Dis. 2020 Jan 1;12(1):e2020010. doi: 10.4084/MJHID.2020.010. eCollection 2020. Review. — View Citation
Banerjee R, Nageshwari K, Puniyani RR. The diagnostic relevance of red cell rigidity. Clin Hemorheol Microcirc. 1998 Sep;19(1):21-4. — View Citation
Bartolucci P, Brugnara C, Teixeira-Pinto A, Pissard S, Moradkhani K, Jouault H, Galacteros F. Erythrocyte density in sickle cell syndromes is associated with specific clinical manifestations and hemolysis. Blood. 2012 Oct 11;120(15):3136-41. doi: 10.1182/blood-2012-04-424184. Epub 2012 Aug 23. Erratum in: Blood. 2014 Mar 20;123(12):1972. — View Citation
Briole A, Podgorski T, Abou B. Molecular rotors as intracellular probes of red blood cell stiffness. Soft Matter. 2021 May 5;17(17):4525-4537. doi: 10.1039/d1sm00321f. — View Citation
Connes P, Alexy T, Detterich J, Romana M, Hardy-Dessources MD, Ballas SK. The role of blood rheology in sickle cell disease. Blood Rev. 2016 Mar;30(2):111-8. doi: 10.1016/j.blre.2015.08.005. Epub 2015 Aug 28. Review. — View Citation
Du E, Diez-Silva M, Kato GJ, Dao M, Suresh S. Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis. Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1422-7. doi: 10.1073/pnas.1424111112. Epub 2015 Jan 20. — View Citation
Faivre M, Renoux C, Bessaa A, Da Costa L, Joly P, Gauthier A, Connes P. Mechanical Signature of Red Blood Cells Flowing Out of a Microfluidic Constriction Is Impacted by Membrane Elasticity, Cell Surface-to-Volume Ratio and Diseases. Front Physiol. 2020 Jun 12;11:576. doi: 10.3389/fphys.2020.00576. eCollection 2020. — View Citation
Gladwin MT, Vichinsky E. Pulmonary complications of sickle cell disease. N Engl J Med. 2008 Nov 20;359(21):2254-65. doi: 10.1056/NEJMra0804411. Review. — View Citation
Gossett DR, Tse HT, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao J, Clark AT, Di Carlo D. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A. 2012 May 15;109(20):7630-5. doi: 10.1073/pnas.1200107109. Epub 2012 Apr 30. — View Citation
Guo Q, Duffy SP, Matthews K, Santoso AT, Scott MD, Ma H. Microfluidic analysis of red blood cell deformability. J Biomech. 2014 Jun 3;47(8):1767-76. doi: 10.1016/j.jbiomech.2014.03.038. Epub 2014 Apr 5. — View Citation
Hamideh D, Alvarez O. Sickle cell disease related mortality in the United States (1999-2009). Pediatr Blood Cancer. 2013 Sep;60(9):1482-6. doi: 10.1002/pbc.24557. Epub 2013 Apr 23. — View Citation
Holmes D, Whyte G, Bailey J, Vergara-Irigaray N, Ekpenyong A, Guck J, Duke T. Separation of blood cells with differing deformability using deterministic lateral displacement(†). Interface Focus. 2014 Dec 6;4(6):20140011. doi: 10.1098/rsfs.2014.0011. — View Citation
Kaul DK, Fabry ME, Windisch P, Baez S, Nagel RL. Erythrocytes in sickle cell anemia are heterogeneous in their rheological and hemodynamic characteristics. J Clin Invest. 1983 Jul;72(1):22-31. — View Citation
Kaul DK, Fabry ME. In vivo studies of sickle red blood cells. Microcirculation. 2004 Mar;11(2):153-65. Review. — View Citation
Kuimova MK, Yahioglu G, Levitt JA, Suhling K. Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. J Am Chem Soc. 2008 May 28;130(21):6672-3. doi: 10.1021/ja800570d. Epub 2008 May 6. — View Citation
Lanzkron S, Carroll CP, Haywood C Jr. Mortality rates and age at death from sickle cell disease: U.S., 1979-2005. Public Health Rep. 2013 Mar-Apr;128(2):110-6. — View Citation
Lipowsky HH, Cram LE, Justice W, Eppihimer MJ. Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability. Microvasc Res. 1993 Jul;46(1):43-64. — View Citation
Lu X, Chaudhury A, Higgins JM, Wood DK. Oxygen-dependent flow of sickle trait blood as an in vitro therapeutic benchmark for sickle cell disease treatments. Am J Hematol. 2018 Oct;93(10):1227-1235. doi: 10.1002/ajh.25227. Epub 2018 Aug 21. — View Citation
Niihara Y, Miller ST, Kanter J, Lanzkron S, Smith WR, Hsu LL, Gordeuk VR, Viswanathan K, Sarnaik S, Osunkwo I, Guillaume E, Sadanandan S, Sieger L, Lasky JL, Panosyan EH, Blake OA, New TN, Bellevue R, Tran LT, Razon RL, Stark CW, Neumayr LD, Vichinsky EP; Investigators of the Phase 3 Trial of l-Glutamine in Sickle Cell Disease. A Phase 3 Trial of l-Glutamine in Sickle Cell Disease. N Engl J Med. 2018 Jul 19;379(3):226-235. doi: 10.1056/NEJMoa1715971. — View Citation
Piel FB, Steinberg MH, Rees DC. Sickle Cell Disease. N Engl J Med. 2017 Apr 20;376(16):1561-1573. doi: 10.1056/NEJMra1510865. Review. — View Citation
Ribeil JA, Hacein-Bey-Abina S, Payen E, Magnani A, Semeraro M, Magrin E, Caccavelli L, Neven B, Bourget P, El Nemer W, Bartolucci P, Weber L, Puy H, Meritet JF, Grevent D, Beuzard Y, Chrétien S, Lefebvre T, Ross RW, Negre O, Veres G, Sandler L, Soni S, de Montalembert M, Blanche S, Leboulch P, Cavazzana M. Gene Therapy in a Patient with Sickle Cell Disease. N Engl J Med. 2017 Mar 2;376(9):848-855. doi: 10.1056/NEJMoa1609677. — View Citation
Telen MJ. Developing new pharmacotherapeutic approaches to treating sickle-cell disease. ISBT Sci Ser. 2017 Feb;12(1):239-247. doi: 10.1111/voxs.12305. Epub 2016 Nov 15. — View Citation
Tomaiuolo G. Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics. 2014 Sep 17;8(5):051501. doi: 10.1063/1.4895755. eCollection 2014 Sep. Review. — View Citation
Vargas FF, Blackshear GL. Vascular resistance and transit time of sickle red blood cells. Blood Cells. 1982;8(1):139-45. — View Citation
Woodcock EM, Girvan P, Eckert J, Lopez-Duarte I, Kubánková M, van Loon JJWA, Brooks NJ, Kuimova MK. Measuring Intracellular Viscosity in Conditions of Hypergravity. Biophys J. 2019 May 21;116(10):1984-1993. doi: 10.1016/j.bpj.2019.03.038. Epub 2019 Apr 8. — View Citation
Yaginuma T, Oliveira MS, Lima R, Ishikawa T, Yamaguchi T. Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel. Biomicrofluidics. 2013 Sep 24;7(5):54110. doi: 10.1063/1.4820414. eCollection 2013. — View Citation
* Note: There are 30 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Study of the intra-erythrocyte viscosity dispersion and rheological profile of red blood cells | Measure of the intra-erythrocyte viscosity dispersion using molecular rotors technique, study of rheological profile of red blood cells in microfluidic circuit : measure of the speed of flowing, and DI deformability Index [DI = (L-W)/(L+W)] of each red blood cell, DI dispersion in each sample, in basal state and after exposure to deoxygenation cycles of blood SCD patients versus control subjects. | 30 months | |
Secondary | Study of the intra-erythrocyte viscosity dispersion and rheological profile of red blood cells | Measure of the intra-erythrocyte viscosity dispersion using molecular rotors technique, study of rheological profile of red blood cells in microfluidic circuit : measure of the speed of flowing, and DI deformability Index [DI = (L-W)/(L+W)] of each red blood cell, DI dispersion in each sample, in basal state and after exposure to deoxygenation cycles in different conditions : congenital red blood cell disorders, acquired red blood cell disorders and clinical events (vasoocclusive crisis, pregnancy, infection). | 24 months |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT02227472 -
Working Memory and School Readiness in Preschool-Aged Children With Sickle Cell Disease
|
||
Recruiting |
NCT06301893 -
Uganda Sickle Surveillance Study (US-3)
|
||
Recruiting |
NCT04398628 -
ATHN Transcends: A Natural History Study of Non-Neoplastic Hematologic Disorders
|
||
Completed |
NCT02522104 -
Evaluation of the Impact of Renal Function on the Pharmacokinetics of SIKLOS ® (DARH)
|
Phase 4 | |
Recruiting |
NCT04688411 -
An mHealth Strategy to Improve Medication Adherence in Adolescents With Sickle Cell Disease
|
N/A | |
Terminated |
NCT03615924 -
Effect of Ticagrelor vs. Placebo in the Reduction of Vaso-occlusive Crises in Pediatric Patients With Sickle Cell Disease
|
Phase 3 | |
Not yet recruiting |
NCT06300723 -
Clinical Study of BRL-101 in Severe SCD
|
N/A | |
Recruiting |
NCT03937817 -
Collection of Human Biospecimens for Basic and Clinical Research Into Globin Variants
|
||
Completed |
NCT04134299 -
To Assess Safety, Tolerability and Physiological Effects on Structure and Function of AXA4010 in Subjects With Sickle Cell Disease
|
N/A | |
Completed |
NCT04917783 -
Health Literacy - Neurocognitive Screening in Pediatric SCD
|
N/A | |
Completed |
NCT02580565 -
Prevalence of Problematic Use of Equimolar Mixture of Oxygen and Nitrous Oxide and Analgesics in the Sickle-cell Disease
|
||
Recruiting |
NCT04754711 -
Interest of Nutritional Care of Children With Sickle Cell Disease on Bone Mineral Density and Body Composition
|
N/A | |
Completed |
NCT04388241 -
Preliminary Feasibility and Efficacy of Behavioral Intervention to Reduce Pain-Related Disability in Pediatric SCD
|
N/A | |
Recruiting |
NCT05431088 -
A Phase 2/3 Study in Adult and Pediatric Participants With SCD
|
Phase 2/Phase 3 | |
Completed |
NCT01158794 -
Genes Influencing Iron Overload State
|
||
Recruiting |
NCT03027258 -
Point-of-Delivery Prenatal Test Results Through mHealth to Improve Birth Outcome
|
N/A | |
Withdrawn |
NCT02960503 -
Macrolide Therapy to Improve Forced Expiratory Volume in 1 Second in Adults With Sickle Cell Disease
|
Phase 1/Phase 2 | |
Completed |
NCT02567695 -
A Single-Dose Relative Bioavailability Study Of GBT440 300 mg Capsules in Healthy Subjects
|
Phase 1 | |
Not yet recruiting |
NCT02525107 -
Prevention of Vaso-occlusive Painful Crisis by Using Omega-3 Fatty Acid Supplements
|
Phase 3 | |
Completed |
NCT02567682 -
Drug Interaction Study of GBT440 With Caffeine, S-warfarin, Omeprazole, and Midazolam in Healthy Subjects
|
Phase 1 |