Clinical Trials Logo

Clinical Trial Summary

Background: Sickle Cell Disease (SCD) is an inherited blood disorder. People with SCD have abnormal hemoglobin in their red blood cells. Researchers are investigating the safety and efficacy of an investigational medicine called AG-348 (mitapivat sulfate) to determine if it will help people with SCD. Objective: To test the tolerability and safety of AG-348 in people with SCD. Eligibility: People ages 18 and older with SCD. Design: Participants will have 8 visits over approximately 14 weeks. At the first visit participants will be screened with a medical history, a physical exam, blood and urine testing, and an EKG. During the following 5 visits, participants will stay at the clinic for 1 night each. Participants will take study drug in increasing doses up to visit 6, after which the drug will be tapered off. All visits will include physical exam, blood, and urine tests. The last visit will occur 4 weeks after stopping the drug. Participants will provide DNA from the blood samples they provide. The DNA will be tested for an inherited gene that can cause differences in response to the study drug. Researchers may also test other genes to see if they can find any genes that interact with SCD.


Clinical Trial Description

Sickle cell disease (SCD) is a multisystem disorder associated with episodes of acute clinical events and progressive organ damage. Episodic pain, triggered by micro-vasoocclusion induced by sickled red blood cells, is the most common acute complication and the leading cause of hospitalization. Management strategies for SCD have evolved very slowly, and treatment of acute pain is still limited to supportive therapy with opioid medication. Until recently in 2017, the only approved therapy for SCD was hydroxyurea (HU), indicated to reduce frequency of acute painful crises but not universally effective. In addition to HU, transfusions with normal red blood cells are widely used to treat severe sickle crises, but this strategy has limitations (not uniformly accessible, accompanied by risks of alloimmunization, hemolytic transfusion reactions and transfusional iron overload). The only curative treatment is bone marrow transplantation, but this option carries significant risks and is limited by the availability of histocompatible donors. As the root cause of SCD is polymerization of deoxy-HbS, there is a strong rationale for exploring agents that could inhibit/ reduce the polymerization process itself. HbS polymerizes only when deoxygenated, its oxygenation is influenced by a few factors, one key factor being the 2,3- diphosphoglycerate (2,3-DPG) concentration in the red blood cell. 2,3-DPG decreases oxygen binding by preferentially binding to the low oxygen-affinity T conformation of HbS and also stabilizes the T form of hemoglobin S and HbS fiber. In addition, increased 2,3- DPG concentration decreases intracellular red cell pH further promoting HbS polymerization. 2,3-DPG is an intermediate substrate in the glycolytic pathway, the only source of ATP production in red blood cells. Pyruvate kinase (PK) is a key enzyme in the final step of glycolysis; PK converts phosphoenolpyruvate to pyruvate, creating 50% of the total red cell ATP that is essential for maintaining integrity of the red cell membrane. Reduced PK activity leads to accumulation of the upstream enzyme substrates, including 2,3- DPG, that favors polymerization of deoxy-HbS. In humans with SCD, and even in sickle carriers who are generally asymptomatic, reduced oxygen affinity will favor deoxygenation of HbS and its polymerization, and thus sickling. Indeed, the combination of PK deficiency and sickle cell trait causing an acute sickling syndrome has been previously reported in two cases. Current approaches to reduce HbS polymerization include fetal hemoglobin induction via multiple strategies and drugs that targets HbS polymerization through increasing affinity of hemoglobin for oxygen (eg. Oxbryta (TM) / Voxelotor / GBT440). Increasing red cell PK (PK-R) activity, leading to a decrease in intracellular 2,3-DPG concentration, presents a potentially attractive therapeutic target for thwarting HbS polymerization and acute sickle pain. AG-348 / mitapivat is a novel, orally bioavailable, small molecule allosteric activator of PK-R, that is currently in Phase II/III clinical trials in humans with PK deficiency (NCT02476916, NCT03548220 / AG348-C-006; NCT03559699 / AG348-C-007). Overview of the preclinical AG-348 data and other data support dose-dependent changes in blood glycolytic intermediates consistent with glycolytic pathway activation at all multiple ascending doses tested, supporting the potential role of AG-348 in the treatment of sickle cell disease. The overall objective of the present study is to determine the clinical safety and tolerability of AG-348 in subjects with SCD. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04000165
Study type Interventional
Source National Institutes of Health Clinical Center (CC)
Contact
Status Completed
Phase Early Phase 1
Start date July 11, 2019
Completion date June 21, 2021

See also
  Status Clinical Trial Phase
Completed NCT02227472 - Working Memory and School Readiness in Preschool-Aged Children With Sickle Cell Disease
Recruiting NCT06301893 - Uganda Sickle Surveillance Study (US-3)
Recruiting NCT04398628 - ATHN Transcends: A Natural History Study of Non-Neoplastic Hematologic Disorders
Completed NCT02522104 - Evaluation of the Impact of Renal Function on the Pharmacokinetics of SIKLOS ® (DARH) Phase 4
Recruiting NCT04688411 - An mHealth Strategy to Improve Medication Adherence in Adolescents With Sickle Cell Disease N/A
Terminated NCT03615924 - Effect of Ticagrelor vs. Placebo in the Reduction of Vaso-occlusive Crises in Pediatric Patients With Sickle Cell Disease Phase 3
Not yet recruiting NCT06300723 - Clinical Study of BRL-101 in Severe SCD N/A
Recruiting NCT03937817 - Collection of Human Biospecimens for Basic and Clinical Research Into Globin Variants
Completed NCT04134299 - To Assess Safety, Tolerability and Physiological Effects on Structure and Function of AXA4010 in Subjects With Sickle Cell Disease N/A
Completed NCT04917783 - Health Literacy - Neurocognitive Screening in Pediatric SCD N/A
Completed NCT02580565 - Prevalence of Problematic Use of Equimolar Mixture of Oxygen and Nitrous Oxide and Analgesics in the Sickle-cell Disease
Recruiting NCT04754711 - Interest of Nutritional Care of Children With Sickle Cell Disease on Bone Mineral Density and Body Composition N/A
Completed NCT04388241 - Preliminary Feasibility and Efficacy of Behavioral Intervention to Reduce Pain-Related Disability in Pediatric SCD N/A
Recruiting NCT05431088 - A Phase 2/3 Study in Adult and Pediatric Participants With SCD Phase 2/Phase 3
Completed NCT01158794 - Genes Influencing Iron Overload State
Recruiting NCT03027258 - Point-of-Delivery Prenatal Test Results Through mHealth to Improve Birth Outcome N/A
Withdrawn NCT02960503 - Macrolide Therapy to Improve Forced Expiratory Volume in 1 Second in Adults With Sickle Cell Disease Phase 1/Phase 2
Completed NCT02620488 - A Brief Laboratory-Based Hypnosis Session for Pain in Sickle Cell Disease N/A
Completed NCT02567695 - A Single-Dose Relative Bioavailability Study Of GBT440 300 mg Capsules in Healthy Subjects Phase 1
Not yet recruiting NCT02525107 - Prevention of Vaso-occlusive Painful Crisis by Using Omega-3 Fatty Acid Supplements Phase 3