Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT02824471
Other study ID # 05-14-07C
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date October 2014
Est. completion date May 2024

Study information

Verified date January 2024
Source University Hospitals Cleveland Medical Center
Contact Umut Gurkan, PhD
Phone (216) 368-6447
Email umut@case.edu
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

'Sickle-shaped' anemia was first clinically described in the US in 1910, and the mutated heritable sickle hemoglobin molecule was identified in 1949. The pathophysiology of SCD is a consequence of abnormal polymerization of sickle hemoglobin (HbS) and its effects on red cell membrane properties, shape, and density, and subsequent critical changes in inflammatory cell and endothelial cell function. Our goal is to understand the impact of CMA abnormalities in SCD, by interrogating a number of recognized interactions in a range of clinical phenotypes. To date, correlative studies in SCD, by us and others, have range between clinical reports, based on tests, interventions, and chart review of individuals or groups of individuals and, at the other extreme, identification of functional gene polymorphisms based on population studies. The investigators wish to augment these studies through a systematic examination of cellular membrane properties and activation status. Of hematologic disorders, SCD may be unusually susceptible to such an examination.


Description:

Novel biofluidic chip technology can investigate surface characteristics that are typically measured with conventional techniques, such as fluorescent activated cell sorting (FACS), immunohistochemistry, or microscopic imaging methods. In FACS, cells of interest are isolated, extensively processed, incubated with a fluorescent-labeled antibody and sorted by optical recognition. In the proposed SCD biofluidic chip (SCD biochip), the interrogating antibody coats the microchannel surface and captures the cell population(s) of interest, without processing, incubation, or in vitro manipulation. The SCD biochip can also quantitate cellular adherence to experimental biological surfaces that are comprised of subcellular components. The SCD biochip is technically simple and experimentally flexible, whereby the population of interest is retained on the chip and quantitated in situ. The microchip system allows retrieval of viable isolated cells for potential downstream processing, analysis, and in vitro culture.


Recruitment information / eligibility

Status Recruiting
Enrollment 100
Est. completion date May 2024
Est. primary completion date May 2024
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 12 Years and older
Eligibility Inclusion Criteria - Male or female =12 years of age at the time of consent (enrollment). - Documentation Sickle Cell Disease, including HbSS or compound heterozygus HbSC- or HbSß- thalassemia diagnosis as evidenced by one or more clinical features. - Written informed consent (and assent when applicable) obtained from subject or subject's legal representative and ability for subject to comply with the requirements of the study. Exclusion Criteria - Presence of a condition or abnormality that in the opinion of the Investigator would compromise the safety of the patient or the quality of the data.

Study Design


Related Conditions & MeSH terms


Intervention

Other:
SCD Group
No Intervention. Use of discard blood/tissue

Locations

Country Name City State
United States University Hospitals Case Medical Center Cleveland Ohio

Sponsors (2)

Lead Sponsor Collaborator
University Hospitals Cleveland Medical Center Case Western Reserve University

Country where clinical trial is conducted

United States, 

References & Publications (101)

Almeida CB, Scheiermann C, Jang JE, Prophete C, Costa FF, Conran N, Frenette PS. Hydroxyurea and a cGMP-amplifying agent have immediate benefits on acute vaso-occlusive events in sickle cell disease mice. Blood. 2012 Oct 4;120(14):2879-88. doi: 10.1182/blood-2012-02-409524. Epub 2012 Jul 25. — View Citation

Anjum F, Lazar J, Zein J, Jamaleddine G, Demetis S, Wadgaonkar R. Characterization of altered patterns of endothelial progenitor cells in sickle cell disease related pulmonary arterial hypertension. Pulm Circ. 2012 Jan-Mar;2(1):54-60. doi: 10.4103/2045-8932.94834. — View Citation

Ayyappan, S., et al., Renal Disease in Sickle Cell: Clinically Varied and Associated with Increased Mortality, in American Society of Hematology 2012: Atlanta Georgia

Bae HT, Baldwin CT, Sebastiani P, Telen MJ, Ashley-Koch A, Garrett M, Hooper WC, Bean CJ, Debaun MR, Arking DE, Bhatnagar P, Casella JF, Keefer JR, Barron-Casella E, Gordeuk V, Kato GJ, Minniti C, Taylor J, Campbell A, Luchtman-Jones L, Hoppe C, Gladwin MT, Zhang Y, Steinberg MH. Meta-analysis of 2040 sickle cell anemia patients: BCL11A and HBS1L-MYB are the major modifiers of HbF in African Americans. Blood. 2012 Aug 30;120(9):1961-2. doi: 10.1182/blood-2012-06-432849. No abstract available. — View Citation

Barabino GA, McIntire LV, Eskin SG, Sears DA, Udden M. Endothelial cell interactions with sickle cell, sickle trait, mechanically injured, and normal erythrocytes under controlled flow. Blood. 1987 Jul;70(1):152-7. — View Citation

Barabino GA, McIntire LV, Eskin SG, Sears DA, Udden M. Rheological studies of erythrocyte-endothelial cell interactions in sickle cell disease. Prog Clin Biol Res. 1987;240:113-27. — View Citation

Barabino GA, Wise RJ, Woodbury VA, Zhang B, Bridges KA, Hebbel RP, Lawler J, Ewenstein BM. Inhibition of sickle erythrocyte adhesion to immobilized thrombospondin by von Willebrand factor under dynamic flow conditions. Blood. 1997 Apr 1;89(7):2560-7. — View Citation

Bartolucci P, Chaar V, Picot J, Bachir D, Habibi A, Fauroux C, Galacteros F, Colin Y, Le Van Kim C, El Nemer W. Decreased sickle red blood cell adhesion to laminin by hydroxyurea is associated with inhibition of Lu/BCAM protein phosphorylation. Blood. 2010 Sep 23;116(12):2152-9. doi: 10.1182/blood-2009-12-257444. Epub 2010 Jun 21. — View Citation

Belcher JD, Marker PH, Weber JP, Hebbel RP, Vercellotti GM. Activated monocytes in sickle cell disease: potential role in the activation of vascular endothelium and vaso-occlusion. Blood. 2000 Oct 1;96(7):2451-9. — View Citation

Boga C, Kozanoglu I, Ozdogu H, Sozer O, Sezgin N, Bakar C. Alterations of circulating endothelial cells after apheresis in patients with sickle cell disease: a potential clue for restoration of pathophysiology. Transfus Apher Sci. 2010 Dec;43(3):273-279. doi: 10.1016/j.transci.2010.09.015. Epub 2010 Oct 15. — View Citation

Brittain HA, Eckman JR, Swerlick RA, Howard RJ, Wick TM. Thrombospondin from activated platelets promotes sickle erythrocyte adherence to human microvascular endothelium under physiologic flow: a potential role for platelet activation in sickle cell vaso-occlusion. Blood. 1993 Apr 15;81(8):2137-43. — View Citation

Brown M, Brunson A, Wun T. A method to identify California's sickle-cell disease population and its linkage to the California Cancer Registry. J Registry Manag. 2012 Summer;39(2):53-61. — View Citation

Canalli AA, Proenca RF, Franco-Penteado CF, Traina F, Sakamoto TM, Saad ST, Conran N, Costa FF. Participation of Mac-1, LFA-1 and VLA-4 integrins in the in vitro adhesion of sickle cell disease neutrophils to endothelial layers, and reversal of adhesion by simvastatin. Haematologica. 2011 Apr;96(4):526-33. doi: 10.3324/haematol.2010.032912. Epub 2010 Dec 20. — View Citation

Chaar V, Picot J, Renaud O, Bartolucci P, Nzouakou R, Bachir D, Galacteros F, Colin Y, Le Van Kim C, El Nemer W. Aggregation of mononuclear and red blood cells through an alpha4beta1-Lu/basal cell adhesion molecule interaction in sickle cell disease. Haematologica. 2010 Nov;95(11):1841-8. doi: 10.3324/haematol.2010.026294. Epub 2010 Jun 18. — View Citation

Chang J, Patton JT, Sarkar A, Ernst B, Magnani JL, Frenette PS. GMI-1070, a novel pan-selectin antagonist, reverses acute vascular occlusions in sickle cell mice. Blood. 2010 Sep 9;116(10):1779-86. doi: 10.1182/blood-2009-12-260513. Epub 2010 May 27. — View Citation

Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV, McMahon RP, Bonds DR. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med. 1995 May 18;332(20):1317-22. doi: 10.1056/NEJM199505183322001. — View Citation

Cheung AT, Miller JW, Miguelino MG, To WJ, Li J, Lin X, Chen PC, Samarron SL, Wun T, Zwerdling T, Green R. Exchange transfusion therapy and its effects on real-time microcirculation in pediatric sickle cell anemia patients: an intravital microscopy study. J Pediatr Hematol Oncol. 2012 Apr;34(3):169-74. doi: 10.1097/MPH.0b013e31823c27ef. — View Citation

Connes P, Coates TD. Autonomic nervous system dysfunction: implication in sickle cell disease. C R Biol. 2013 Mar;336(3):142-7. doi: 10.1016/j.crvi.2012.09.003. Epub 2012 Oct 16. — View Citation

De Castro LM, Zennadi R, Jonassaint JC, Batchvarova M, Telen MJ. Effect of propranolol as antiadhesive therapy in sickle cell disease. Clin Transl Sci. 2012 Dec;5(6):437-44. doi: 10.1111/cts.12005. Epub 2012 Oct 17. — View Citation

de Jong K, Emerson RK, Butler J, Bastacky J, Mohandas N, Kuypers FA. Short survival of phosphatidylserine-exposing red blood cells in murine sickle cell anemia. Blood. 2001 Sep 1;98(5):1577-84. doi: 10.1182/blood.v98.5.1577. — View Citation

de Jong K, Larkin SK, Styles LA, Bookchin RM, Kuypers FA. Characterization of the phosphatidylserine-exposing subpopulation of sickle cells. Blood. 2001 Aug 1;98(3):860-7. doi: 10.1182/blood.v98.3.860. — View Citation

Dover GJ, Brusilow S, Samid D. Increased fetal hemoglobin in patients receiving sodium 4-phenylbutyrate. N Engl J Med. 1992 Aug 20;327(8):569-70. doi: 10.1056/NEJM199208203270818. No abstract available. — View Citation

El Nemer W, Gauthier E, Wautier MP, Rahuel C, Gane P, Galacteros F, Wautier JL, Cartron JP, Colin Y, Le Van Kim C. Role of Lu/BCAM in abnormal adhesion of sickle red blood cells to vascular endothelium. Transfus Clin Biol. 2008 Feb-Mar;15(1-2):29-33. doi: 10.1016/j.tracli.2008.05.002. Epub 2008 Jun 2. — View Citation

Enenstein J, Milbauer L, Domingo E, Wells A, Roney M, Kiley J, Wei P, Hebbel RP. Proinflammatory phenotype with imbalance of KLF2 and RelA: risk of childhood stroke with sickle cell anemia. Am J Hematol. 2010 Jan;85(1):18-23. doi: 10.1002/ajh.21558. — View Citation

Finnegan EM, Turhan A, Golan DE, Barabino GA. Adherent leukocytes capture sickle erythrocytes in an in vitro flow model of vaso-occlusion. Am J Hematol. 2007 Apr;82(4):266-75. doi: 10.1002/ajh.20819. — View Citation

Frenette PS, Atweh GF. Sickle cell disease: old discoveries, new concepts, and future promise. J Clin Invest. 2007 Apr;117(4):850-8. doi: 10.1172/JCI30920. — View Citation

Frenette PS. Sickle cell vaso-occlusion: multistep and multicellular paradigm. Curr Opin Hematol. 2002 Mar;9(2):101-6. doi: 10.1097/00062752-200203000-00003. — View Citation

Frenette PS. Sickle cell vasoocclusion: heterotypic, multicellular aggregations driven by leukocyte adhesion. Microcirculation. 2004 Mar;11(2):167-77. — View Citation

Gauthier E, Rahuel C, Wautier MP, El Nemer W, Gane P, Wautier JL, Cartron JP, Colin Y, Le Van Kim C. Protein kinase A-dependent phosphorylation of Lutheran/basal cell adhesion molecule glycoprotein regulates cell adhesion to laminin alpha5. J Biol Chem. 2005 Aug 26;280(34):30055-62. doi: 10.1074/jbc.M503293200. Epub 2005 Jun 23. — View Citation

Gurkan UA, Anand T, Tas H, Elkan D, Akay A, Keles HO, Demirci U. Controlled viable release of selectively captured label-free cells in microchannels. Lab Chip. 2011 Dec 7;11(23):3979-89. doi: 10.1039/c1lc20487d. Epub 2011 Oct 14. — View Citation

Gurkan UA, Tasoglu S, Akkaynak D, Avci O, Unluisler S, Canikyan S, Maccallum N, Demirci U. Smart interface materials integrated with microfluidics for on-demand local capture and release of cells. Adv Healthc Mater. 2012 Sep;1(5):661-8. doi: 10.1002/adhm.201200009. Epub 2012 Jul 9. — View Citation

Gurkan UA, Tasoglu S, Kavaz D, Demirel MC, Demirci U. Emerging technologies for assembly of microscale hydrogels. Adv Healthc Mater. 2012 Mar;1(2):149-158. doi: 10.1002/adhm.201200011. — View Citation

Hebbel RP, Boogaerts MA, Eaton JW, Steinberg MH. Erythrocyte adherence to endothelium in sickle-cell anemia. A possible determinant of disease severity. N Engl J Med. 1980 May 1;302(18):992-5. doi: 10.1056/NEJM198005013021803. — View Citation

Hebbel RP, Boogaerts MA, Koresawa S, Jacob HS, Eaton JW, Steinberg MH. Erytrocyte adherence to endothelium as a determinant of vasocclusive severity in sickle cell disease. Trans Assoc Am Physicians. 1980;93:94-9. No abstract available. — View Citation

Hebbel RP, Eaton JW, Steinberg MH, White JG. Erythrocyte/endothelial interactions and the vasocclusive severity of sickle cell disease. Prog Clin Biol Res. 1981;55:145-62. — View Citation

Hebbel RP, Yamada O, Moldow CF, Jacob HS, White JG, Eaton JW. Abnormal adherence of sickle erythrocytes to cultured vascular endothelium: possible mechanism for microvascular occlusion in sickle cell disease. J Clin Invest. 1980 Jan;65(1):154-60. doi: 10.1172/JCI109646. — View Citation

Herrick JB. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. 1910. Yale J Biol Med. 2001 May-Jun;74(3):179-84. No abstract available. — View Citation

Hidalgo A, Chang J, Jang JE, Peired AJ, Chiang EY, Frenette PS. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat Med. 2009 Apr;15(4):384-91. doi: 10.1038/nm.1939. Epub 2009 Mar 22. — View Citation

Hillery CA, Du MC, Montgomery RR, Scott JP. Increased adhesion of erythrocytes to components of the extracellular matrix: isolation and characterization of a red blood cell lipid that binds thrombospondin and laminin. Blood. 1996 Jun 1;87(11):4879-86. — View Citation

Jang JE, Hidalgo A, Frenette PS. Intravenous immunoglobulins modulate neutrophil activation and vascular injury through FcgammaRIII and SHP-1. Circ Res. 2012 Apr 13;110(8):1057-66. doi: 10.1161/CIRCRESAHA.112.266411. Epub 2012 Mar 13. — View Citation

Kato GJ, Hebbel RP, Steinberg MH, Gladwin MT. Vasculopathy in sickle cell disease: Biology, pathophysiology, genetics, translational medicine, and new research directions. Am J Hematol. 2009 Sep;84(9):618-25. doi: 10.1002/ajh.21475. — View Citation

Kaul DK, Finnegan E, Barabino GA. Sickle red cell-endothelium interactions. Microcirculation. 2009 Jan;16(1):97-111. doi: 10.1080/10739680802279394. — View Citation

Kaul DK, Nagel RL, Chen D, Tsai HM. Sickle erythrocyte-endothelial interactions in microcirculation: the role of von Willebrand factor and implications for vasoocclusion. Blood. 1993 May 1;81(9):2429-38. — View Citation

Kim KB, Chun H, Kim HC, Chung TD. Red blood cell quantification microfluidic chip using polyelectrolytic gel electrodes. Electrophoresis. 2009 May;30(9):1464-9. doi: 10.1002/elps.200800448. — View Citation

Kinney TR, Sleeper LA, Wang WC, Zimmerman RA, Pegelow CH, Ohene-Frempong K, Wethers DL, Bello JA, Vichinsky EP, Moser FG, Gallagher DM, DeBaun MR, Platt OS, Miller ST. Silent cerebral infarcts in sickle cell anemia: a risk factor analysis. The Cooperative Study of Sickle Cell Disease. Pediatrics. 1999 Mar;103(3):640-5. doi: 10.1542/peds.103.3.640. — View Citation

Kuypers FA, Lewis RA, Hua M, Schott MA, Discher D, Ernst JD, Lubin BH. Detection of altered membrane phospholipid asymmetry in subpopulations of human red blood cells using fluorescently labeled annexin V. Blood. 1996 Feb 1;87(3):1179-87. — View Citation

Lettre G, Sankaran VG, Bezerra MA, Araujo AS, Uda M, Sanna S, Cao A, Schlessinger D, Costa FF, Hirschhorn JN, Orkin SH. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11869-74. doi: 10.1073/pnas.0804799105. Epub 2008 Jul 30. — View Citation

Lin Z, Natesan V, Shi H, Dong F, Kawanami D, Mahabeleshwar GH, Atkins GB, Nayak L, Cui Y, Finigan JH, Jain MK. Kruppel-like factor 2 regulates endothelial barrier function. Arterioscler Thromb Vasc Biol. 2010 Oct;30(10):1952-9. doi: 10.1161/ATVBAHA.110.211474. Epub 2010 Jul 22. — View Citation

Lucas D, Bruns I, Battista M, Mendez-Ferrer S, Magnon C, Kunisaki Y, Frenette PS. Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields. Blood. 2012 Apr 26;119(17):3962-5. doi: 10.1182/blood-2011-07-367102. Epub 2012 Mar 14. — View Citation

Luck L, Zeng L, Hiti AL, Weinberg KI, Malik P. Human CD34(+) and CD34(+)CD38(-) hematopoietic progenitors in sickle cell disease differ phenotypically and functionally from normal and suggest distinct subpopulations that generate F cells. Exp Hematol. 2004 May;32(5):483-93. doi: 10.1016/j.exphem.2004.02.003. — View Citation

Machado RF, Barst RJ, Yovetich NA, Hassell KL, Kato GJ, Gordeuk VR, Gibbs JS, Little JA, Schraufnagel DE, Krishnamurti L, Girgis RE, Morris CR, Rosenzweig EB, Badesch DB, Lanzkron S, Onyekwere O, Castro OL, Sachdev V, Waclawiw MA, Woolson R, Goldsmith JC, Gladwin MT; walk-PHaSST Investigators and Patients. Hospitalization for pain in patients with sickle cell disease treated with sildenafil for elevated TRV and low exercise capacity. Blood. 2011 Jul 28;118(4):855-64. doi: 10.1182/blood-2010-09-306167. Epub 2011 Apr 28. — View Citation

Mahabeleshwar GH, Qureshi MA, Takami Y, Sharma N, Lingrel JB, Jain MK. A myeloid hypoxia-inducible factor 1alpha-Kruppel-like factor 2 pathway regulates gram-positive endotoxin-mediated sepsis. J Biol Chem. 2012 Jan 6;287(2):1448-57. doi: 10.1074/jbc.M111.312702. Epub 2011 Nov 22. — View Citation

Manodori AB, Barabino GA, Lubin BH, Kuypers FA. Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin. Blood. 2000 Feb 15;95(4):1293-300. — View Citation

Matsui NM, Borsig L, Rosen SD, Yaghmai M, Varki A, Embury SH. P-selectin mediates the adhesion of sickle erythrocytes to the endothelium. Blood. 2001 Sep 15;98(6):1955-62. doi: 10.1182/blood.v98.6.1955. — View Citation

Milton JN, Rooks H, Drasar E, McCabe EL, Baldwin CT, Melista E, Gordeuk VR, Nouraie M, Kato GR, Minniti C, Taylor J, Campbell A, Luchtman-Jones L, Rana S, Castro O, Zhang Y, Thein SL, Sebastiani P, Gladwin MT; Walk-PHAAST Investigators; Steinberg MH. Genetic determinants of haemolysis in sickle cell anaemia. Br J Haematol. 2013 Apr;161(2):270-8. doi: 10.1111/bjh.12245. Epub 2013 Feb 14. Erratum In: Br J Haematol. 2014 Aug;166(3):468. Kato, Gregory R [corrected to Kata, Gregory J]. Br J Haematol. 2014 Aug;166(3):468. — View Citation

Milton JN, Sebastiani P, Solovieff N, Hartley SW, Bhatnagar P, Arking DE, Dworkis DA, Casella JF, Barron-Casella E, Bean CJ, Hooper WC, DeBaun MR, Garrett ME, Soldano K, Telen MJ, Ashley-Koch A, Gladwin MT, Baldwin CT, Steinberg MH, Klings ES. A genome-wide association study of total bilirubin and cholelithiasis risk in sickle cell anemia. PLoS One. 2012;7(4):e34741. doi: 10.1371/journal.pone.0034741. Epub 2012 Apr 27. — View Citation

Moon HS, Kwon K, Kim SI, Han H, Sohn J, Lee S, Jung HI. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip. 2011 Mar 21;11(6):1118-25. doi: 10.1039/c0lc00345j. Epub 2011 Feb 7. — View Citation

Moon S, Ceyhan E, Gurkan UA, Demirci U. Statistical modeling of single target cell encapsulation. PLoS One. 2011;6(7):e21580. doi: 10.1371/journal.pone.0021580. Epub 2011 Jul 21. — View Citation

Natarajan M, Udden MM, McIntire LV. Adhesion of sickle red blood cells and damage to interleukin-1 beta stimulated endothelial cells under flow in vitro. Blood. 1996 Jun 1;87(11):4845-52. — View Citation

Nayak L, Goduni L, Takami Y, Sharma N, Kapil P, Jain MK, Mahabeleshwar GH. Kruppel-like factor 2 is a transcriptional regulator of chronic and acute inflammation. Am J Pathol. 2013 May;182(5):1696-704. doi: 10.1016/j.ajpath.2013.01.029. Epub 2013 Mar 13. — View Citation

Nouraie M, Lee JS, Zhang Y, Kanias T, Zhao X, Xiong Z, Oriss TB, Zeng Q, Kato GJ, Gibbs JS, Hildesheim ME, Sachdev V, Barst RJ, Machado RF, Hassell KL, Little JA, Schraufnagel DE, Krishnamurti L, Novelli E, Girgis RE, Morris CR, Rosenzweig EB, Badesch DB, Lanzkron S, Castro OL, Goldsmith JC, Gordeuk VR, Gladwin MT; Walk-PHASST Investigators and Patients. The relationship between the severity of hemolysis, clinical manifestations and risk of death in 415 patients with sickle cell anemia in the US and Europe. Haematologica. 2013 Mar;98(3):464-72. doi: 10.3324/haematol.2012.068965. Epub 2012 Sep 14. — View Citation

Ohene-Frempong K, Weiner SJ, Sleeper LA, Miller ST, Embury S, Moohr JW, Wethers DL, Pegelow CH, Gill FM. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998 Jan 1;91(1):288-94. — View Citation

Ozdogu H, Sozer O, Boga C, Kozanoglu L, Maytalman E, Guzey M. Flow cytometric evaluation of circulating endothelial cells: a new protocol for identifying endothelial cells at several stages of differentiation. Am J Hematol. 2007 Aug;82(8):706-11. doi: 10.1002/ajh.20904. — View Citation

Parsons SF, Spring FA, Chasis JA, Anstee DJ. Erythroid cell adhesion molecules Lutheran and LW in health and disease. Baillieres Best Pract Res Clin Haematol. 1999 Dec;12(4):729-45. doi: 10.1053/beha.1999.0050. — View Citation

PAULING L, ITANO HA, et al. Sickle cell anemia, a molecular disease. Science. 1949 Apr 29;109(2835):443. No abstract available. — View Citation

Paulson RF, Shi L, Wu DC. Stress erythropoiesis: new signals and new stress progenitor cells. Curr Opin Hematol. 2011 May;18(3):139-45. doi: 10.1097/MOH.0b013e32834521c8. — View Citation

Perelman N, Selvaraj SK, Batra S, Luck LR, Erdreich-Epstein A, Coates TD, Kalra VK, Malik P. Placenta growth factor activates monocytes and correlates with sickle cell disease severity. Blood. 2003 Aug 15;102(4):1506-14. doi: 10.1182/blood-2002-11-3422. Epub 2003 Apr 24. — View Citation

Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, Klug PP. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994 Jun 9;330(23):1639-44. doi: 10.1056/NEJM199406093302303. — View Citation

Platt OS. Easing the suffering caused by sickle cell disease. N Engl J Med. 1994 Mar 17;330(11):783-4. doi: 10.1056/NEJM199403173301110. No abstract available. — View Citation

Powars DR, Chan LS, Hiti A, Ramicone E, Johnson C. Outcome of sickle cell anemia: a 4-decade observational study of 1056 patients. Medicine (Baltimore). 2005 Nov;84(6):363-376. doi: 10.1097/01.md.0000189089.45003.52. — View Citation

Rizvi I, Gurkan UA, Tasoglu S, Alagic N, Celli JP, Mensah LB, Mai Z, Demirci U, Hasan T. Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc Natl Acad Sci U S A. 2013 May 28;110(22):E1974-83. doi: 10.1073/pnas.1216989110. Epub 2013 May 3. — View Citation

Sachdev V, Kato GJ, Gibbs JS, Barst RJ, Machado RF, Nouraie M, Hassell KL, Little JA, Schraufnagel DE, Krishnamurti L, Novelli EM, Girgis RE, Morris CR, Rosenzweig EB, Badesch DB, Lanzkron S, Castro OL, Taylor JG 6th, Hannoush H, Goldsmith JC, Gladwin MT, Gordeuk VR; Walk-PHASST Investigators. Echocardiographic markers of elevated pulmonary pressure and left ventricular diastolic dysfunction are associated with exercise intolerance in adults and adolescents with homozygous sickle cell anemia in the United States and United Kingdom. Circulation. 2011 Sep 27;124(13):1452-60. doi: 10.1161/CIRCULATIONAHA.111.032920. Epub 2011 Sep 6. — View Citation

Safaya S, Steinberg MH, Klings ES. Monocytes from sickle cell disease patients induce differential pulmonary endothelial gene expression via activation of NF-kappaB signaling pathway. Mol Immunol. 2012 Feb;50(1-2):117-23. doi: 10.1016/j.molimm.2011.12.012. Epub 2012 Jan 20. — View Citation

Samsel L, Dagur PK, Raghavachari N, Seamon C, Kato GJ, McCoy JP Jr. Imaging flow cytometry for morphologic and phenotypic characterization of rare circulating endothelial cells. Cytometry B Clin Cytom. 2013 Nov-Dec;84(6):379-89. doi: 10.1002/cyto.b.21088. Epub 2013 Mar 29. — View Citation

Sangkatumvong S, Khoo MC, Coates TD. Abnormal cardiac autonomic control in sickle cell disease following transient hypoxia. Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:1996-9. doi: 10.1109/IEMBS.2008.4649581. — View Citation

Schwartz RS, Tanaka Y, Fidler IJ, Chiu DT, Lubin B, Schroit AJ. Increased adherence of sickled and phosphatidylserine-enriched human erythrocytes to cultured human peripheral blood monocytes. J Clin Invest. 1985 Jun;75(6):1965-72. doi: 10.1172/JCI111913. — View Citation

Setty BN, Kulkarni S, Dampier CD, Stuart MJ. Fetal hemoglobin in sickle cell anemia: relationship to erythrocyte adhesion markers and adhesion. Blood. 2001 May 1;97(9):2568-73. doi: 10.1182/blood.v97.9.2568. — View Citation

Setty BN, Kulkarni S, Stuart MJ. Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion. Blood. 2002 Mar 1;99(5):1564-71. doi: 10.1182/blood.v99.5.1564. — View Citation

Shiu YT, Udden MM, McIntire LV. Perfusion with sickle erythrocytes up-regulates ICAM-1 and VCAM-1 gene expression in cultured human endothelial cells. Blood. 2000 May 15;95(10):3232-41. — View Citation

Solovey A, Gui L, Ramakrishnan S, Steinberg MH, Hebbel RP. Sickle cell anemia as a possible state of enhanced anti-apoptotic tone: survival effect of vascular endothelial growth factor on circulating and unanchored endothelial cells. Blood. 1999 Jun 1;93(11):3824-30. — View Citation

Solovey A, Lin Y, Browne P, Choong S, Wayner E, Hebbel RP. Circulating activated endothelial cells in sickle cell anemia. N Engl J Med. 1997 Nov 27;337(22):1584-90. doi: 10.1056/NEJM199711273372203. — View Citation

Sowemimo-Coker SO, Meiselman HJ, Francis RB Jr. Increased circulating endothelial cells in sickle cell crisis. Am J Hematol. 1989 Aug;31(4):263-5. doi: 10.1002/ajh.2830310409. — View Citation

Stone PC, Stuart J, Nash GB. Effects of density and of dehydration of sickle cells on their adhesion to cultured endothelial cells. Am J Hematol. 1996 Jul;52(3):135-43. doi: 10.1002/(SICI)1096-8652(199607)52:33.0.CO;2-U. — View Citation

Strijbos MH, Landburg PP, Nur E, Teerlink T, Leebeek FW, Rijneveld AW, Biemond BJ, Sleijfer S, Gratama JW, Duits AJ, Schnog JJ; CURAMA study group. Circulating endothelial cells: a potential parameter of organ damage in sickle cell anemia? Blood Cells Mol Dis. 2009 Jul-Aug;43(1):63-7. doi: 10.1016/j.bcmd.2009.02.007. Epub 2009 Apr 7. — View Citation

Stuart MJ, Nagel RL. Sickle-cell disease. Lancet. 2004 Oct 9-15;364(9442):1343-60. doi: 10.1016/S0140-6736(04)17192-4. — View Citation

Sugihara K, Sugihara T, Mohandas N, Hebbel RP. Thrombospondin mediates adherence of CD36+ sickle reticulocytes to endothelial cells. Blood. 1992 Nov 15;80(10):2634-42. — View Citation

Tasoglu S, Gurkan UA, Wang S, Demirci U. Manipulating biological agents and cells in micro-scale volumes for applications in medicine. Chem Soc Rev. 2013 Jul 7;42(13):5788-808. doi: 10.1039/c3cs60042d. — View Citation

Telen MJ. Red blood cell surface adhesion molecules: their possible roles in normal human physiology and disease. Semin Hematol. 2000 Apr;37(2):130-42. doi: 10.1016/s0037-1963(00)90038-6. — View Citation

Turhan A, Weiss LA, Mohandas N, Coller BS, Frenette PS. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3047-51. doi: 10.1073/pnas.052522799. — View Citation

Udani M, Zen Q, Cottman M, Leonard N, Jefferson S, Daymont C, Truskey G, Telen MJ. Basal cell adhesion molecule/lutheran protein. The receptor critical for sickle cell adhesion to laminin. J Clin Invest. 1998 Jun 1;101(11):2550-8. doi: 10.1172/JCI1204. — View Citation

van Beem RT, Nur E, Zwaginga JJ, Landburg PP, van Beers EJ, Duits AJ, Brandjes DP, Lommerse I, de Boer HC, van der Schoot CE, Schnog JJ, Biemond BJ; CURAMA Study Group. Elevated endothelial progenitor cells during painful sickle cell crisis. Exp Hematol. 2009 Sep;37(9):1054-9. doi: 10.1016/j.exphem.2009.06.003. Epub 2009 Jun 17. — View Citation

West MS, Wethers D, Smith J, Steinberg M. Laboratory profile of sickle cell disease: a cross-sectional analysis. The Cooperative Study of Sickle Cell Disease. J Clin Epidemiol. 1992 Aug;45(8):893-909. doi: 10.1016/0895-4356(92)90073-v. — View Citation

Wick TM, Moake JL, Udden MM, Eskin SG, Sears DA, McIntire LV. Unusually large von Willebrand factor multimers increase adhesion of sickle erythrocytes to human endothelial cells under controlled flow. J Clin Invest. 1987 Sep;80(3):905-10. doi: 10.1172/JCI113151. — View Citation

Wood K, Russell J, Hebbel RP, Granger DN. Differential expression of E- and P-selectin in the microvasculature of sickle cell transgenic mice. Microcirculation. 2004 Jun;11(4):377-85. doi: 10.1080/10739680490437559. — View Citation

Wood KC, Hebbel RP, Granger DN. Endothelial cell P-selectin mediates a proinflammatory and prothrombogenic phenotype in cerebral venules of sickle cell transgenic mice. Am J Physiol Heart Circ Physiol. 2004 May;286(5):H1608-14. doi: 10.1152/ajpheart.01056.2003. Epub 2004 Jan 2. — View Citation

Wun T, Cordoba M, Rangaswami A, Cheung AW, Paglieroni T. Activated monocytes and platelet-monocyte aggregates in patients with sickle cell disease. Clin Lab Haematol. 2002 Apr;24(2):81-8. doi: 10.1046/j.1365-2257.2002.00433.x. — View Citation

Wun T, Soulieres D, Frelinger AL, Krishnamurti L, Novelli EM, Kutlar A, Ataga KI, Knupp CL, McMahon LE, Strouse JJ, Zhou C, Heath LE, Nwachuku CE, Jakubowski JA, Riesmeyer JS, Winters KJ. A double-blind, randomized, multicenter phase 2 study of prasugrel versus placebo in adult patients with sickle cell disease. J Hematol Oncol. 2013 Feb 17;6:17. doi: 10.1186/1756-8722-6-17. — View Citation

Yang DH, Yoon GH, Kim SH, Rhee JM, Kim YS, Khang G. Surface and chemical properties of surface-modified UHMWPE powder and mechanical and thermal properties of it impregnated PMMA bone cement, III: effect of various ratios of initiator/inhibitor on the surface modification of UHMWPE powder. J Biomater Sci Polym Ed. 2005;16(9):1121-38. doi: 10.1163/1568562054798572. — View Citation

Zennadi R, Chien A, Xu K, Batchvarova M, Telen MJ. Sickle red cells induce adhesion of lymphocytes and monocytes to endothelium. Blood. 2008 Oct 15;112(8):3474-83. doi: 10.1182/blood-2008-01-134346. Epub 2008 Jul 29. — View Citation

Zhang X, Khimji I, Gurkan UA, Safaee H, Catalano PN, Keles HO, Kayaalp E, Demirci U. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting. Lab Chip. 2011 Aug 7;11(15):2535-40. doi: 10.1039/c1lc20236g. Epub 2011 Jun 16. — View Citation

Zhu X, Zhou N, Zhu J, Zhang Z, Zhang W, Cheng Z, Tu Y, Zhu X. A high-efficiency strategy for synthesizing cyclic polymers of methacryates in one pot. Macromol Rapid Commun. 2013 Jun 25;34(12):1014-9. doi: 10.1002/marc.201300220. Epub 2013 Apr 19. — View Citation

* Note: There are 101 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Develop an SCD Biochip with which to examine key cellular properties and interactions, including RBC and WBC cellular, adhesive, and inflammatory properties, and circulating endothelial and hematopoietic precursor cell characteristics. Red and white cell adhesion to biomolecules (e.g. laminin, fibronectin, and selectins) will be measured on a microfluidic device, the SCD Biochip. Adhesion will be measured under normal oxygen and low oxygen conditions. Adhesions will be assessed relative to clinical findings, such as hematology parameters, and evidence for vaso-occlusion, pain, inflammation, and vasculopathy in patients with sickle cell disease.endothelial and hematopoietic precursor cells based on membrane properties and adhesion. 2 years
Secondary Correlate SCD Biochip function in heterogeneous SCD populations, including HbSS and HbSC at a range of ages, and in those with acute and chronic complications and compared with normal controls. The investigators will examine and validate clinical correlations with these cellular/membrane properties in larger populations of SCD, across a range of phenotypes, using our simple rapid flexible SCD Biochip platform. 2 years
See also
  Status Clinical Trial Phase
Completed NCT02227472 - Working Memory and School Readiness in Preschool-Aged Children With Sickle Cell Disease
Recruiting NCT06301893 - Uganda Sickle Surveillance Study (US-3)
Recruiting NCT04398628 - ATHN Transcends: A Natural History Study of Non-Neoplastic Hematologic Disorders
Completed NCT02522104 - Evaluation of the Impact of Renal Function on the Pharmacokinetics of SIKLOS ® (DARH) Phase 4
Recruiting NCT04688411 - An mHealth Strategy to Improve Medication Adherence in Adolescents With Sickle Cell Disease N/A
Terminated NCT03615924 - Effect of Ticagrelor vs. Placebo in the Reduction of Vaso-occlusive Crises in Pediatric Patients With Sickle Cell Disease Phase 3
Not yet recruiting NCT06300723 - Clinical Study of BRL-101 in Severe SCD N/A
Recruiting NCT03937817 - Collection of Human Biospecimens for Basic and Clinical Research Into Globin Variants
Completed NCT04917783 - Health Literacy - Neurocognitive Screening in Pediatric SCD N/A
Completed NCT04134299 - To Assess Safety, Tolerability and Physiological Effects on Structure and Function of AXA4010 in Subjects With Sickle Cell Disease N/A
Completed NCT02580565 - Prevalence of Problematic Use of Equimolar Mixture of Oxygen and Nitrous Oxide and Analgesics in the Sickle-cell Disease
Recruiting NCT04754711 - Interest of Nutritional Care of Children With Sickle Cell Disease on Bone Mineral Density and Body Composition N/A
Completed NCT04388241 - Preliminary Feasibility and Efficacy of Behavioral Intervention to Reduce Pain-Related Disability in Pediatric SCD N/A
Recruiting NCT05431088 - A Phase 2/3 Study in Adult and Pediatric Participants With SCD Phase 2/Phase 3
Completed NCT01158794 - Genes Influencing Iron Overload State
Recruiting NCT03027258 - Point-of-Delivery Prenatal Test Results Through mHealth to Improve Birth Outcome N/A
Withdrawn NCT02960503 - Macrolide Therapy to Improve Forced Expiratory Volume in 1 Second in Adults With Sickle Cell Disease Phase 1/Phase 2
Withdrawn NCT02630394 - A Pilot Study of Azithromycin Prophylaxis for Acute Chest Syndrome in Sickle Cell Disease Phase 1
Not yet recruiting NCT02525107 - Prevention of Vaso-occlusive Painful Crisis by Using Omega-3 Fatty Acid Supplements Phase 3
Completed NCT02620488 - A Brief Laboratory-Based Hypnosis Session for Pain in Sickle Cell Disease N/A