View clinical trials related to Sickle Cell Disease.
Filter by:Beta-thalassemias and hemoglobinopathies are serious inherited blood diseases caused by abnormal or deficiency of beta A chains of hemoglobin, the protein in red blood cells which delivers oxygen throughout the body.The diseases are characterized by hemolytic anemia, organ damage, and early mortality without treatment. Increases in another type of (normal) hemoglobin, fetal globin (HbF), which is normally silenced in infancy, reduces anemia and morbidity. Even incremental augmentation of fetal globin is established to reduce red blood cell pathology, anemia, certain complications, and to improve survival. This trial will evaluate an oral drug discovered in a high throughput screen, which increases fetal globin protein (HbF and red blood cells expressing HbF)and messenger ribonucleic acid (mRNA) to high levels in anemic nonhuman primates and in transgenic mice. The study drug acts by suppressing 4 repressors of the fetal globin gene promoter in progenitor cells from patients. The drug has been used for 50 years in a combination product for different actions - to enhance half-life and reduce side effects of a different active drug- and is considered safe for long-term use. This trial will first evaluate 3 dose levels in small cohorts of nontransfused patients with beta thalassemia intermedia. The most active dose will then be evaluated in larger subject groups with beta thalassemia and other hemoglobinopathies, such as sickle cell disease.
This is a single-arm, mechanistic clinical trial to measure predictors of senescence and the in vivo survival of transfused red blood cells (RBCs) in individuals with sickle cell disease (SCD) receiving chronic transfusion therapy (CTT). Chronic transfusion in patients with SCD is a common treatment. The efficacy of RBC transfusion therapy to treat or prevent complications of SCD may be hampered by variable survival of the transfused donor RBC. The overall aim is to see how long RBC survive in SCD patients who are chronically transfused. When a study participant has a regular blood transfusion the researchers will label a small portion of the RBCs that are transfused with biotin. The participant will return at Day 1, weekly for 3 months and monthly for 3 months to measure how long those RBCs survive. An optional sub-study using INTERCEPT RBCs will mirror the main study but will use INTERCEPT RBCs that have biotinylated for 1 RBC unit.
The purpose of this research study is to better understand how blood flow and metabolism change can influence brain development in the early decades of life. SCA participants and healthy controls are age and sex-matched for comparison. Within the SCA cohort, children with infarcts may have thinner cortices than those without, reflecting a greater loss. The investigators will examine brain blood flow and metabolism using magnetic resonance imaging (MRI). The brain's blood vessels expand and constrict to regulate blood flow based on the brain's needs. The amount of expanding and contracting the blood vessels may vary by age. The brain's blood flow changes in small ways during everyday activities, such exercise, deep concentration, or normal brain growth. Significant illness or psychological stress may increase the brain's metabolic demand or cause other bigger changes in blood flow. If blood vessels are not able to expand to give more blood flow when metabolic demand is high, the brain may not get all of the oxygen it needs. In extreme circumstances, if the brain is unable to get enough oxygen for a long time, a stroke may occur. Sometimes small strokes occur without other noticeable changes and are only detectable on an MRI. These are sometimes called "silent strokes." In less extreme circumstances, not having a full oxygen supply may cause the brain to grow and develop more slowly than when it has a full supply. One way to test the ability of blood vessels to expand is by measuring blood flow while breathing in carbon dioxide. Carbon dioxide causes blood vessels in the brain to dilate without increasing brain metabolism. During this study participants may be asked to undergo a blood draw, MRI, cognitive assessments, and brief questionnaires. The study team will use a special mask to control the amount of carbon dioxide the participants breathe in.
In parallel with the growth of American Thrombosis and Hemostasis Network's (ATHN) clinical studies, the number of new therapies for all congenital and acquired hematologic conditions, not just those for bleeding and clotting disorders, is increasing significantly. Some of the recently FDA-approved therapies for congenital and acquired hematologic conditions have yet to demonstrate long-term safety and effectiveness beyond the pivotal trials that led to their approval. In addition, results from well-controlled, pivotal studies often cannot be replicated once a therapy has been approved for general use.(1,2,3,4) In 2019 alone, the United States Food and Drug Administration (FDA) has issued approvals for twenty-four new therapies for congenital and acquired hematologic conditions.(5) In addition, almost 10,000 new studies for hematologic diseases are currently registered on www.clinicaltrials.gov.(6) With this increase in potential new therapies on the horizon, it is imperative that clinicians and clinical researchers in the field of non-neoplastic hematology have a uniform, secure, unbiased, and enduring method to collect long-term safety and efficacy data. ATHN Transcends is a cohort study to determine the safety, effectiveness, and practice of therapies used in the treatment of participants with congenital or acquired non-neoplastic blood disorders and connective tissue disorders with bleeding tendency. The study consists of 7 cohorts with additional study "arms" and "modules" branching off from the cohorts. The overarching objective of this longitudinal, observational study is to characterize the safety, effectiveness and practice of treatments for all people with congenital and acquired hematologic disorders in the US. As emphasized in a recently published review, accurate, uniform and quality national data collection is critical in clinical research, particularly for longitudinal cohort studies covering a lifetime of biologic risk.(7)
The investigators will attempt to develop a more accurate equation to estimate eGFR in pediatric and adult sickle cell patients
This study is a single center, prospective exploratory pilot study of Sickle Cell Anemia (SCA) participants. The study will enroll patients with early stages of sickle cell nephropathy (Chronic Kidney Disease (CKD) stage 1 or 2) who are at the highest risk of CKD progression (presence of both hemoglobinuria and urine albumin concentration ≥ 30 mg/g creatinin
This is a non-randomized, open-label, multi-site, single-dose, Phase 3 study in approximately 35 adults and pediatric subjects ≥2 and ≤50 years of age with sickle cell disease (SCD). The study will evaluate hematopoietic stem cell (HSC) transplantation (HSCT) using bb1111 (also known as LentiGlobin BB305 Drug Product for SCD).
Sickle cell disease (SCD) is an inherited blood disorder. Symptoms include acute and chronic complications. Due to progress in SCD care, patients with SCD are living longer than before and we focus more attention in chronic complications. Children with SCD experience worse cognitive functions than healthy children, and fewer is known about cognitive functions in adults. Studies suggest lower cognitive performance in SCD, mostly in executive functions and processing speed, but the biological and anatomical substrates of cognitive decline are not yet well established in SCD. Often times, cognitive impairments and cerebral disorders are not diagnosed and treated in adults with SCD. The main objective of this study is to propose a deep neuropsychological assessment in adults with SCD and cognitive complaints and to highlight links between cognitive functions and clinical, biological and neuroradiological markers. The hypothesis of this study is that cognitive functions are associated with severity of the SCD, with bood abnormalities, with MRI markers and Transcranial Doppler (TCD) markers of cerebrovascular disease. The secondary objective of this study is to validate a brief cognitive assessment tool (BEARNI tool) in adults with SCD. This study is an observational cross-sectional study that will enroll adults with SCD and cognitive complaint.
The purpose of this study is to develop a safe and curative stem cell transplant approach to treating sickle cell disease by assessing the safety of haploidentical hematopoietic stem cell transplantation using αβ+ T-cell depletion for children and adolescents with severe sickle cell disease (SCD).
The objective of the study is to refine our knowledge on the physiopathology of the symptoms and the complications for the patients affected by a drepanocytic syndrome. The establishment of risk factors and indicators of severity will allow to target better the patients requiring an adequate strategy in order to prevent the installation of some complications or to limit their worsening.