Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT05495438
Other study ID # 22CX7592
Secondary ID
Status Completed
Phase
First received
Last updated
Start date July 22, 2022
Est. completion date October 31, 2022

Study information

Verified date February 2023
Source Imperial College London
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

The impact of deploying artificial intelligence (AI) in healthcare settings in unclear, in particular with regards to how it will influence human decision makers. Previous research demonstrated that AI alerts were frequently ignored (Kamal et al., 2020 ) or could lead to unexpected behaviour with worsening of patient outcomes (Wilson et al., 2021 ). On the other hand, excessive confidence and trust placed in the AI could have several adverse consequences including ability to detect harmful AI decisions, leading to patient harm as well as human deskilling. Some of these aspects relate to automation bias. In this simulation study, the investigators intend to measure whether medical decisions in areas of high clinical uncertainty are modified by the use of an AI-based clinical decision support tool. How the dose of intravenous fluids (IVF) and vasopressors administered by doctors in adult patients with sepsis (severe infection with organ failure) in the ICU), changes as a result of disclosing the doses suggested by a hypothetical AI will be measured. The area of sepsis resuscitation is poorly codified, with high uncertainty leading to high variability in practice. This study will not specifically mention the AI Clinician (Komorowski et al., 2018). Instead, the investigators will describe a hypothetical AI for which there is some evidence of effectiveness on retrospective data in another clinical setting (e.g. a model that was retrospectively validated using data from a different country than the source data used for model training) but no prospective evidence of effectiveness or safety. As such, it is possible for this hypothetical AI to provide unsafe suggestions. The investigators will intentionally introduce unsafe AI suggestions (in random order), to measure the sensitivity of our participants at detecting these.


Description:

The impact of deploying artificial intelligence (AI) in healthcare settings in unclear, in particular with regards to how it will influence human decision makers. Previous research demonstrated that AI alerts were frequently ignored (Kamal et al., 2020 ) or could lead to unexpected behaviour with worsening of patient outcomes (Wilson et al., 2021 ). On the other hand, excessive confidence and trust placed in the AI could have several adverse consequences including ability to detect harmful AI decisions, leading to patient harm as well as human deskilling. Some of these aspects relate to automation bias. In this simulation study, the investigators intend to measure whether medical decisions in areas of high clinical uncertainty are modified by the use of an AI-based clinical decision support tool. How the dose of intravenous fluids (IVF) and vasopressors administered by doctors in adult patients with sepsis (severe infection with organ failure) in the ICU), changes as a result of disclosing the doses suggested by a hypothetical AI will be measured. The area of sepsis resuscitation is poorly codified, with high uncertainty leading to high variability in practice. This study will not specifically mention the AI Clinician (Komorowski et al., 2018). Instead, the investigators will describe a hypothetical AI for which there is some evidence of effectiveness on retrospective data in another clinical setting (e.g. a model that was retrospectively validated using data from a different country than the source data used for model training) but no prospective evidence of effectiveness or safety. As such, it is possible for this hypothetical AI to provide unsafe suggestions. The investigators will intentionally introduce unsafe AI suggestions (in random order), to measure the sensitivity of our participants at detecting these. The investigators will examine what participant characteristics are linked with an increase likelihood of being influenced by the AI, and conduct a number of pre-specified subgroup analyses, e.g. junior versus senior ICU doctors, and separating those with a positive or a negative attitude towards AI.


Recruitment information / eligibility

Status Completed
Enrollment 38
Est. completion date October 31, 2022
Est. primary completion date October 31, 2022
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Junior (senior house officer) or senior (registrar/fellow/consultant) ICU doctor Exclusion Criteria: - Participants not meeting the inclusion criteria.

Study Design


Related Conditions & MeSH terms


Intervention

Other:
Hypothetical AI
n/a - There is no intervention. Clinicians will review the suggestions of a hypothetical AI

Locations

Country Name City State
United Kingdom Imperial College Hospitals NHS Trust London

Sponsors (2)

Lead Sponsor Collaborator
Imperial College London University of York

Country where clinical trial is conducted

United Kingdom, 

Outcome

Type Measure Description Time frame Safety issue
Primary Influence of AI on ICU Clinicians Influence of AI on ICU Clinicians, this will be divided into the following categories: overall and stratified by safe/unsafe, junior/senior and positive/negative attitude towards AI. 3 months
Secondary Participants' characteristics What are the characteristics of those taking part in the simulation and how does this affect decision making. 3 months
Secondary Trust in AI How much do ICU clinicians trust the AI system. 3 months
Secondary Confidence in participants' decisions How much confidence do clinicians place in the AI system 3 months
Secondary Proportion of time with attention on AI explanation Where is attention focused during the simulation 3 months
See also
  Status Clinical Trial Phase
Active, not recruiting NCT05095324 - The Biomarker Prediction Model of Septic Risk in Infected Patients
Completed NCT02714595 - Study of Cefiderocol (S-649266) or Best Available Therapy for the Treatment of Severe Infections Caused by Carbapenem-resistant Gram-negative Pathogens Phase 3
Completed NCT03644030 - Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
Completed NCT02867267 - The Efficacy and Safety of Ta1 for Sepsis Phase 3
Completed NCT04804306 - Sepsis Post Market Clinical Utility Simple Endpoint Study - HUMC
Recruiting NCT05578196 - Fecal Microbial Transplantation in Critically Ill Patients With Severe Infections. N/A
Terminated NCT04117568 - The Role of Emergency Neutrophils and Glycans in Postoperative and Septic Patients
Completed NCT03550794 - Thiamine as a Renal Protective Agent in Septic Shock Phase 2
Completed NCT04332861 - Evaluation of Infection in Obstructing Urolithiasis
Completed NCT04227652 - Control of Fever in Septic Patients N/A
Enrolling by invitation NCT05052203 - Researching the Effects of Sepsis on Quality Of Life, Vitality, Epigenome and Gene Expression During RecoverY From Sepsis
Terminated NCT03335124 - The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock Phase 4
Recruiting NCT04005001 - Machine Learning Sepsis Alert Notification Using Clinical Data Phase 2
Completed NCT03258684 - Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Sepsis and Septic Shock N/A
Recruiting NCT05217836 - Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
Completed NCT05018546 - Safety and Efficacy of Different Irrigation System in Retrograde Intrarenal Surgery N/A
Completed NCT03295825 - Heparin Binding Protein in Early Sepsis Diagnosis N/A
Not yet recruiting NCT06045130 - PUFAs in Preterm Infants
Not yet recruiting NCT05361135 - 18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in S. Aureus Bacteraemia N/A
Not yet recruiting NCT05443854 - Impact of Aminoglycosides-based Antibiotics Combination and Protective Isolation on Outcomes in Critically-ill Neutropenic Patients With Sepsis: (Combination-Lock01) Phase 3