Sepsis Clinical Trial
Official title:
Impact and Safety of AI in Decision Making in the ICU: a Simulation Experiment
The impact of deploying artificial intelligence (AI) in healthcare settings in unclear, in particular with regards to how it will influence human decision makers. Previous research demonstrated that AI alerts were frequently ignored (Kamal et al., 2020 ) or could lead to unexpected behaviour with worsening of patient outcomes (Wilson et al., 2021 ). On the other hand, excessive confidence and trust placed in the AI could have several adverse consequences including ability to detect harmful AI decisions, leading to patient harm as well as human deskilling. Some of these aspects relate to automation bias. In this simulation study, the investigators intend to measure whether medical decisions in areas of high clinical uncertainty are modified by the use of an AI-based clinical decision support tool. How the dose of intravenous fluids (IVF) and vasopressors administered by doctors in adult patients with sepsis (severe infection with organ failure) in the ICU), changes as a result of disclosing the doses suggested by a hypothetical AI will be measured. The area of sepsis resuscitation is poorly codified, with high uncertainty leading to high variability in practice. This study will not specifically mention the AI Clinician (Komorowski et al., 2018). Instead, the investigators will describe a hypothetical AI for which there is some evidence of effectiveness on retrospective data in another clinical setting (e.g. a model that was retrospectively validated using data from a different country than the source data used for model training) but no prospective evidence of effectiveness or safety. As such, it is possible for this hypothetical AI to provide unsafe suggestions. The investigators will intentionally introduce unsafe AI suggestions (in random order), to measure the sensitivity of our participants at detecting these.
The impact of deploying artificial intelligence (AI) in healthcare settings in unclear, in particular with regards to how it will influence human decision makers. Previous research demonstrated that AI alerts were frequently ignored (Kamal et al., 2020 ) or could lead to unexpected behaviour with worsening of patient outcomes (Wilson et al., 2021 ). On the other hand, excessive confidence and trust placed in the AI could have several adverse consequences including ability to detect harmful AI decisions, leading to patient harm as well as human deskilling. Some of these aspects relate to automation bias. In this simulation study, the investigators intend to measure whether medical decisions in areas of high clinical uncertainty are modified by the use of an AI-based clinical decision support tool. How the dose of intravenous fluids (IVF) and vasopressors administered by doctors in adult patients with sepsis (severe infection with organ failure) in the ICU), changes as a result of disclosing the doses suggested by a hypothetical AI will be measured. The area of sepsis resuscitation is poorly codified, with high uncertainty leading to high variability in practice. This study will not specifically mention the AI Clinician (Komorowski et al., 2018). Instead, the investigators will describe a hypothetical AI for which there is some evidence of effectiveness on retrospective data in another clinical setting (e.g. a model that was retrospectively validated using data from a different country than the source data used for model training) but no prospective evidence of effectiveness or safety. As such, it is possible for this hypothetical AI to provide unsafe suggestions. The investigators will intentionally introduce unsafe AI suggestions (in random order), to measure the sensitivity of our participants at detecting these. The investigators will examine what participant characteristics are linked with an increase likelihood of being influenced by the AI, and conduct a number of pre-specified subgroup analyses, e.g. junior versus senior ICU doctors, and separating those with a positive or a negative attitude towards AI. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT05095324 -
The Biomarker Prediction Model of Septic Risk in Infected Patients
|
||
Completed |
NCT02714595 -
Study of Cefiderocol (S-649266) or Best Available Therapy for the Treatment of Severe Infections Caused by Carbapenem-resistant Gram-negative Pathogens
|
Phase 3 | |
Completed |
NCT03644030 -
Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
|
||
Completed |
NCT02867267 -
The Efficacy and Safety of Ta1 for Sepsis
|
Phase 3 | |
Completed |
NCT04804306 -
Sepsis Post Market Clinical Utility Simple Endpoint Study - HUMC
|
||
Recruiting |
NCT05578196 -
Fecal Microbial Transplantation in Critically Ill Patients With Severe Infections.
|
N/A | |
Terminated |
NCT04117568 -
The Role of Emergency Neutrophils and Glycans in Postoperative and Septic Patients
|
||
Completed |
NCT03550794 -
Thiamine as a Renal Protective Agent in Septic Shock
|
Phase 2 | |
Completed |
NCT04332861 -
Evaluation of Infection in Obstructing Urolithiasis
|
||
Completed |
NCT04227652 -
Control of Fever in Septic Patients
|
N/A | |
Enrolling by invitation |
NCT05052203 -
Researching the Effects of Sepsis on Quality Of Life, Vitality, Epigenome and Gene Expression During RecoverY From Sepsis
|
||
Terminated |
NCT03335124 -
The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock
|
Phase 4 | |
Recruiting |
NCT04005001 -
Machine Learning Sepsis Alert Notification Using Clinical Data
|
Phase 2 | |
Completed |
NCT03258684 -
Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Sepsis and Septic Shock
|
N/A | |
Recruiting |
NCT05217836 -
Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
|
||
Completed |
NCT05018546 -
Safety and Efficacy of Different Irrigation System in Retrograde Intrarenal Surgery
|
N/A | |
Completed |
NCT03295825 -
Heparin Binding Protein in Early Sepsis Diagnosis
|
N/A | |
Not yet recruiting |
NCT06045130 -
PUFAs in Preterm Infants
|
||
Not yet recruiting |
NCT05361135 -
18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in S. Aureus Bacteraemia
|
N/A | |
Not yet recruiting |
NCT05443854 -
Impact of Aminoglycosides-based Antibiotics Combination and Protective Isolation on Outcomes in Critically-ill Neutropenic Patients With Sepsis: (Combination-Lock01)
|
Phase 3 |