Sepsis Clinical Trial
— PREVISEOfficial title:
Prediction of Severe Sepsis Using a Machine Learning Algorithm
NCT number | NCT03235193 |
Other study ID # | 1097090-1 |
Secondary ID | |
Status | Completed |
Phase | N/A |
First received | |
Last updated | |
Start date | July 1, 2017 |
Est. completion date | August 30, 2017 |
Verified date | September 2021 |
Source | Dascena |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
In this prospective study, the ability of a machine learning algorithm to predict sepsis and influence clinical outcomes, will be investigated at Cabell Huntington Hospital (CHH).
Status | Completed |
Enrollment | 2296 |
Est. completion date | August 30, 2017 |
Est. primary completion date | August 30, 2017 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - All adult patients visiting the emergency department, or admitted to the participating intensive care unit (ICU) wards of Cabell Huntington Hospital will be eligible. Exclusion Criteria: - All patients younger than 18 years of age will be excluded. |
Country | Name | City | State |
---|---|---|---|
United States | Cabell Huntington Hospital | Huntington | West Virginia |
Lead Sponsor | Collaborator |
---|---|
Dascena | Cabell Huntington Hospital |
United States,
Calvert J, Desautels T, Chettipally U, Barton C, Hoffman J, Jay M, Mao Q, Mohamadlou H, Das R. High-performance detection and early prediction of septic shock for alcohol-use disorder patients. Ann Med Surg (Lond). 2016 May 10;8:50-5. doi: 10.1016/j.amsu.2016.04.023. eCollection 2016 Jun. — View Citation
Calvert JS, Price DA, Chettipally UK, Barton CW, Feldman MD, Hoffman JL, Jay M, Das R. A computational approach to early sepsis detection. Comput Biol Med. 2016 Jul 1;74:69-73. doi: 10.1016/j.compbiomed.2016.05.003. Epub 2016 May 12. — View Citation
Desautels T, Calvert J, Hoffman J, Jay M, Kerem Y, Shieh L, Shimabukuro D, Chettipally U, Feldman MD, Barton C, Wales DJ, Das R. Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach. JMIR Med Inform. 2016 Sep 30;4(3):e28. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Other | Hospital readmission | Through study completion, an average of 30 days | ||
Other | ICU length of stay | Through study completion, an average of 30 days | ||
Primary | In-hospital mortality | Through study completion, an average of 30 days | ||
Secondary | Hospital length of stay | Through study completion, an average of 30 days |
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT05095324 -
The Biomarker Prediction Model of Septic Risk in Infected Patients
|
||
Completed |
NCT02714595 -
Study of Cefiderocol (S-649266) or Best Available Therapy for the Treatment of Severe Infections Caused by Carbapenem-resistant Gram-negative Pathogens
|
Phase 3 | |
Completed |
NCT03644030 -
Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
|
||
Completed |
NCT02867267 -
The Efficacy and Safety of Ta1 for Sepsis
|
Phase 3 | |
Completed |
NCT04804306 -
Sepsis Post Market Clinical Utility Simple Endpoint Study - HUMC
|
||
Recruiting |
NCT05578196 -
Fecal Microbial Transplantation in Critically Ill Patients With Severe Infections.
|
N/A | |
Terminated |
NCT04117568 -
The Role of Emergency Neutrophils and Glycans in Postoperative and Septic Patients
|
||
Completed |
NCT03550794 -
Thiamine as a Renal Protective Agent in Septic Shock
|
Phase 2 | |
Completed |
NCT04332861 -
Evaluation of Infection in Obstructing Urolithiasis
|
||
Completed |
NCT04227652 -
Control of Fever in Septic Patients
|
N/A | |
Enrolling by invitation |
NCT05052203 -
Researching the Effects of Sepsis on Quality Of Life, Vitality, Epigenome and Gene Expression During RecoverY From Sepsis
|
||
Terminated |
NCT03335124 -
The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock
|
Phase 4 | |
Recruiting |
NCT04005001 -
Machine Learning Sepsis Alert Notification Using Clinical Data
|
Phase 2 | |
Completed |
NCT03258684 -
Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Sepsis and Septic Shock
|
N/A | |
Recruiting |
NCT05217836 -
Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
|
||
Completed |
NCT05018546 -
Safety and Efficacy of Different Irrigation System in Retrograde Intrarenal Surgery
|
N/A | |
Completed |
NCT03295825 -
Heparin Binding Protein in Early Sepsis Diagnosis
|
N/A | |
Not yet recruiting |
NCT06045130 -
PUFAs in Preterm Infants
|
||
Not yet recruiting |
NCT05361135 -
18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in S. Aureus Bacteraemia
|
N/A | |
Not yet recruiting |
NCT05443854 -
Impact of Aminoglycosides-based Antibiotics Combination and Protective Isolation on Outcomes in Critically-ill Neutropenic Patients With Sepsis: (Combination-Lock01)
|
Phase 3 |