Clinical Trials Logo

Clinical Trial Summary

Acute inflammation induced by surgery and sepsis is complicated by the development of iron-restricted anemia due to the up-regulation of hepcidin. Excess hepcidin causes intracellular sequestration of iron, decreasing its availability for erythropoiesis. Hepcidin might be a potential target to reduce transfusion requirements in surgical and sepsis patients. Vitamin D supplementation might constitute a novel strategy to modulate the hepcidin-ferroportin-iron axis. Up to now, there are no data regarding the possibility that by using vitamin D supplementation in surgical and septic shock patients, the physicians could ameliorate anemia and, hence, reduce transfusion requirements. Aim: to conduct a randomised controlled trial to determine the impact of high-dose vitamin D enteral supplementation on serum hepcidin levels and transfusion requirements after major abdominal surgery and in septic shock patients.

Clinical Trial Description

Patient blood management has become an important concept for the perioperative care of the surgical patients and in septic patients, aiming to improve outcomes. Hepcidin might be a potential target to reduce transfusion requirements after major abdominal surgery and in patients with sepsis. Major surgery and sepsis induce complex immune dysregulations, characterised by a pro-inflammatory state (the postoperative acute-phase reaction). Excess hepcidin values in acute inflammatory conditions might represent an exaggerated response that leads to iron-sequestration anemia, a functional iron deficiency anemia. Vitamin D supplementation might constitute a novel strategy to modulate the hepcidin-ferroportin-iron axis in surgery and sepsis-induced acute inflammation. Thus, vitamin D might impact hepcidin values and might reduce transfusion requirements.

I. Inflammation-induced regulation of the hepcidin-ferroportin-iron axis

Surgery and sepsis are associated with iron-restricted anemia. After major abdominal surgery and sepsis, a prototypical inflammatory syndrome, often complicated by the development of anemia, appears. Inflammatory cytokines (like interleukin 6) released during acute infection alter iron metabolism by inducing excess synthesis of hepcidin. Anemia after major abdominal surgery and sepsis may be the expression of impaired erythropoiesis as a result of hepcidin up-regulation. Hepcidin plays a role in the development of anemia, together with the inhibition of erythropoietin production, a decreased lifespan of erythrocytes, and a blunted erythropoietic response. Functional iron deficiency is increasingly recognised as a cause of anemia in the general surgical patient and in patients with sepsis.

Iron is a two-faced element. First, iron is essential for living as it is incorporated in the "breathing" molecule haemoglobin and in the mitochondrial respiratory chain. On the other hand, iron is detrimental due to the generation of oxidative stress and its availability for the growing of bacteria. Low serum iron level is considered detrimental as it leads to anemia and low tissue oxygen delivery. Iron deficiency and anemia are associated with poor outcomes in surgical and septic patients. Also, transfusion is associated with immune suppression and other adverse reactions. Thus, other approaches to the correction of anemia are advocated, even though not yet included in the clinical practice.

Hepcidin is the master regulator of iron metabolism and hence, a modulator of anemia in states of inflammation. Hepcidin is an acute phase protein synthetised in the liver and which acts as an hyposideremia inducing hormone. It binds to ferroportin (an iron exporter) and prevents the release of iron from the cells: prevents the absorption of dietary iron from enterocytes and prevents iron release from macrophages, where it is stored. Thus, the effect of hepcidin would be iron sequestration, lowering the serum iron concentrations. The beneficial result would be a low availability of iron for bacterial growth (thus, a direct antimicrobial effect) and less oxidative stress. The detrimental result is the limited possibility for the synthesis of new haemoglobin molecules and the occurrence of anemia. The up-regulation of hepcidin, as a pro-inflammatory biomarker, characterises both acute and chronic inflammatory conditions. The induction of hepcidin synthesis may be the cause for the iron-restricted erythropoiesis in the surgical population and in patients with sepsis. The induction of hepcidin synthesis may contribute to the development of anemia, which is detrimental for tissue oxygenation and might increase transfusion requirements and the aggravation of immune suppression after blood transfusion. In animal models of anemia due to inflammation, hepcidin knockout mice had milder anemia and faster recovery.

Excess values of the iron regulating hormone hepcidin causes intracellular sequestration of iron and might decrease the availability of iron for erythropoiesis, leading to the anemia frequently encountered in inflammatory conditions. Anemia is not only very frequent among critically ill patients, but is associated with increased transfusion rates and worse outcomes. Anemia may impair oxygen delivery to peripheral tissues and impose transfusion, which itself carries the risk of further immune suppression. Recent data has emphasised the need to restrict transfusions as much as possible, as transfusion is associated with increased morbidity and mortality. Instead, alternative methods to improve anemia and ameliorate tissue oxygen delivery might be beneficial.

II. Vitamin D down-regulates hepcidin expression

Vitamin D is a hormone promoting bone health, which also has a wide range of cellular activities including the differentiation of hematopoietic cells and down-regulation of inflammatory cytokines. Vitamin D has anti-inflammatory and immune-regulating properties and the maintenance of adequate vitamin D status may play a role in managing inflammation and immunity. Vitamin D supplementation in patients with chronic inflammatory conditions like chronic kidney disease improves the values of circulating markers of inflammation and immunity. Recently, it has been highlighted that in certain conditions, like chronic kidney disease, the administration of vitamin D reduces serum hepcidin values and transfusion requirements.

Up to now, there are no data regarding the possibility that by using vitamin D supplementation in surgical or septic shock patients, the physicians could target the hepcidin-ferroportin-iron axis to prevent the occurrence of anemia and, hence, reduce transfusion requirements. Oral vitamin D supplementation lowers hepcidin values and might increase erythropoiesis and decrease inflammation.

III. Vitamin D supplementation in the critically ill. Safety profile

The therapeutic potential of vitamin D is a topic of intense interest. A high prevalence of low vitamin D levels has been confirmed in patients who are critically ill. Vitamin D deficiency is associated with higher infection rates, 30-day mortality and in-hospital mortality in adult critically ill patients. During critical illness, vitamin D supplementation has a favorable safety profile and a possible mechanism of vitamin D supplementation in inducing bactericidal pleiotropic effects has been suggested. To improve vitamin D status, high-dose vitamin D is required in the critically ill, as they display a blunted response to supplementation. Recent evidence suggests that treatment of vitamin-D deficient critically ill patients may improve outcomes and mortality, possibly through enhancing innate immunity and the inhibition of proinflammatory cytokines. Further clinical trials to explore the effects of vitamin D supplementation on the up-regulation process of proinflammatory cytokines are needed. ;

Study Design

Related Conditions & MeSH terms

NCT number NCT03001687
Study type Interventional
Source Iuliu Hatieganu University of Medicine and Pharmacy
Contact Luminita Goga
Phone +40-264-597-256
Email [email protected]
Status Recruiting
Phase N/A
Start date January 2017
Completion date December 2017

See also
  Status Clinical Trial Phase
Completed NCT02714595 - Study of Cefiderocol (S-649266) or Best Available Therapy for the Treatment of Severe Infections Caused by Carbapenem-resistant Gram-negative Pathogens Phase 3
Completed NCT03644030 - Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
Recruiting NCT04117568 - The Role of Emergency Neutrophils and Glycans in Postoperative and Septic Patients
Recruiting NCT03550794 - Thiamine as a Renal Protective Agent in Septic Shock Phase 2
Active, not recruiting NCT04332861 - Evaluation of Infection in Obstructing Urolithiasis
Completed NCT04227652 - Control of Fever in Septic Patients N/A
Terminated NCT03335124 - The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock Phase 4
Completed NCT03258684 - Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Sepsis and Septic Shock N/A
Completed NCT03295825 - Heparin Binding Protein in Early Sepsis Diagnosis N/A
Not yet recruiting NCT04870125 - Safety Study of Inhaled Carbon Monoxide to Treat Sepsis-Induced Acute Respiratory Distress Syndrome (ARDS) Phase 1
Not yet recruiting NCT04088591 - High-dose Intravenous Vitamin C as an Adjunctive Treatment for Sepsis in Rwanda Phase 2
Not yet recruiting NCT04516395 - Optimizing Antibiotic Dosing Regimens for the Treatment of Infection Caused by Carbapenem Resistant Enterobacteriaceae N/A
Recruiting NCT02922998 - CD64 and Antibiotics in Human Sepsis N/A
Recruiting NCT02930070 - qSOFA in General Wards: the Accuracy in Diagnosis of Sepsis N/A
Recruiting NCT02899143 - Short-course Antimicrobial Therapy in Sepsis Phase 2
Completed NCT02907931 - Carotid Doppler Ultrasound for the Measurement of Intravascular Volume Status N/A
Recruiting NCT02567305 - Neutrophil Extracellular Traps and Neonatal (PV4991) & Pediatric Sepsis (PV5063) N/A
Recruiting NCT02565251 - Volemic Resuscitation in Sepsis and Septic Shock N/A
Completed NCT02467023 - Project 4B: Lower Extremity Strength Training in ICU Patients N/A
Completed NCT02210169 - RCT of Continuous Versus Intermittent Infusion of Vancomycin in Neonates N/A