Clinical Trials Logo

Clinical Trial Summary

The investigators will use the Compensatory Reserve Index (CRI) device to monitor hemodynamic status of patients in the hospital. CRI values of patients will be monitored during their care in order to verify the compliance of the values to the physiological condition. During the protocol investigators will document patients injuries, life-saving procedures performed, response to treatment as well progress to systemic inflammatory response syndrome (SIRS) and sepsis.

The indices measured in the study will not be a consideration when handling patients. The medical team will not be exposed to metrics measured.


Clinical Trial Description

Assessment of patients in the emergency department, ICU or surgical department can be a challenging process. This assessment includes collecting data regarding injury mechanism, vital signs, and physical examination findings before proceeding to other ways of evaluating the patient.

These data are then integrated in an attempt to form an accurate patient status and to determine the urgency of treatment and evacuation to the next echelon of care when necessary. When caring for multiple casualties, this process takes on an even greater importance because the care of one patient can delay the care of others.

Triage and monitoring of patients consists of several vital sign measurements including blood pressure, oxygen saturation, and heart rate. These measurements show varying correlation with patient survival, Injury Severity Score, and the need for life-saving intervention. The most significant disadvantage of their use as part of patient triage is that they are all retrospective by nature, and a change in these indices occur only after substantial hemodynamic compromise and failure of compensatory mechanisms when life-saving interventions might be too late.

Because of the limitations inherent to these vital signs, several calculated indices have been suggested in an attempt to integrate a few vital signs into more sensitive metrics for prediction of patient outcomes. The most frequently described metric is shock index (SI), which is calculated as the ratio between heart rate and systolic blood pressure (normal values, 0.5 Y 0.7), and has demonstrated superiority over other indices. Heart rate variability has also been frequently suggested as a calculated vital sign, but its clinical utility in the acute blood loss setting has proven to be limited as a result of its high interpatient and intrapatient variability.

The Compensatory Reserve Index (CRI) represents a new paradigm for measuring the physiological reserve of integrated cardiopulmonary mechanisms (e.g., tachycardia, vasoconstriction, breathing) that compensate for reduced central blood volume. Advanced sensor technologies such as photoplethysmography enable noninvasive recordings of analog arterial waveforms. Using a model that induces stepwise reduction of central blood volume (lower body negative pressure [LBNP]) in volunteering young healthy human test subjects, through application of negative pressure to the lower body, feature-extraction and machine-learning techniques were used to reveal subtle changes in waveform features that are associated with a declining volume. This approach enables simultaneous abstraction and normalization of various characteristics of the arterial waveform. As such, the CRI aims to reflect the capacity of all factors contributing to physiological compensatory mechanisms, including compensatory reflexes, various muscle contractions, and respirations, among others. Compensatory Reserve Index values range from 0 (complete decompensation) to 1 (full compensatory reserve available). The device itself is compact, light, and can be placed on the patient's finger, and the test can be performed within 30 s, making the measurement of CRI theoretically feasible in almost any setting. The approach was designed to prospectively identify ongoing loss of central blood volume and thus estimate the point at which individuals will experience hemodynamic decompensation (onset of shock) well in advance compared with changes in standard or "legacy" vital signs.

The CRI has been shown to correlate with central blood volume changes in human subjects in laboratory conditions however, few published data regarding its use in other experimental models or its ability to detect actual blood loss exist. The current investigation represents the first effort to apply a small pulse oximeter unit to test the CRI on human subjects admitted to hospital.

The purpose of the study is to test the hypothesis that a novel noninvasive CRI monitoring algorithm would demonstrate greater sensitivity and specificity compared with standard vital signs for identifying patients with blood loss, SIRS, sepsis thus enabling appropriate measures to be taken. ;


Study Design

Observational Model: Case Control, Time Perspective: Prospective


Related Conditions & MeSH terms


NCT number NCT02701725
Study type Observational
Source Meir Medical Center
Contact Avi Benov, M.D M.H.A
Phone 97297472501
Email avi.benov@clalit.org.il
Status Not yet recruiting
Phase N/A
Start date March 2016
Completion date September 2016

See also
  Status Clinical Trial Phase
Active, not recruiting NCT05095324 - The Biomarker Prediction Model of Septic Risk in Infected Patients
Completed NCT02714595 - Study of Cefiderocol (S-649266) or Best Available Therapy for the Treatment of Severe Infections Caused by Carbapenem-resistant Gram-negative Pathogens Phase 3
Completed NCT03644030 - Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
Completed NCT02867267 - The Efficacy and Safety of Ta1 for Sepsis Phase 3
Completed NCT04804306 - Sepsis Post Market Clinical Utility Simple Endpoint Study - HUMC
Recruiting NCT05578196 - Fecal Microbial Transplantation in Critically Ill Patients With Severe Infections. N/A
Terminated NCT04117568 - The Role of Emergency Neutrophils and Glycans in Postoperative and Septic Patients
Completed NCT03550794 - Thiamine as a Renal Protective Agent in Septic Shock Phase 2
Completed NCT04332861 - Evaluation of Infection in Obstructing Urolithiasis
Completed NCT04227652 - Control of Fever in Septic Patients N/A
Enrolling by invitation NCT05052203 - Researching the Effects of Sepsis on Quality Of Life, Vitality, Epigenome and Gene Expression During RecoverY From Sepsis
Terminated NCT03335124 - The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock Phase 4
Recruiting NCT04005001 - Machine Learning Sepsis Alert Notification Using Clinical Data Phase 2
Completed NCT03258684 - Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Sepsis and Septic Shock N/A
Recruiting NCT05217836 - Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
Completed NCT05018546 - Safety and Efficacy of Different Irrigation System in Retrograde Intrarenal Surgery N/A
Completed NCT03295825 - Heparin Binding Protein in Early Sepsis Diagnosis N/A
Not yet recruiting NCT06045130 - PUFAs in Preterm Infants
Not yet recruiting NCT05361135 - 18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in S. Aureus Bacteraemia N/A
Not yet recruiting NCT05443854 - Impact of Aminoglycosides-based Antibiotics Combination and Protective Isolation on Outcomes in Critically-ill Neutropenic Patients With Sepsis: (Combination-Lock01) Phase 3