View clinical trials related to Sepsis.
Filter by:This study is conducted in critically ill children with sepsis with a five years follow-up. We aim to investigate the impact of sepsis on long-term outcomes including growth, neurodevelopment, survival rate, quality of life.
This study is being done to determine if early administration of Midodrine can improve outcomes by maintaining a higher mean blood pressure off of intravenous medications. Researchers want to see if Midodrine can help people with sepsis need fewer vasopressors, which could mean shorter hospital stays, less time with uncomfortable tubes, and a smoother recovery overall.
Impaired fibrinolysis in septic patients is associated with worse outcome. The present study investigates fibrinolysis shutdown in septic patients, defined as prolonged ClotPro® TPA lysis time at 30 minutes. The TPA lysis time reference range is established in a cohort of healthy volunteers.
Obesity has been shown to increase adverse outcomes in some critically ill patients e.g. those with COVID-19. For patients with sepsis this association is less clear cut but there is evidence that body fat distribution, resulting from impaired subcutaneous adipose tissue function, is associated with adverse clinical outcomes in critical care. The investigators aim to study subcutaneous adipose tissue function in lean and obese sepsis patients in critical care and compare that to healthy controls. First, the study will investigate differences in adipose tissue function (inflammation and mitochondrial function) related to obesity. Second, the investigators will examine whether lean critically ill patients with sepsis have enhanced adipose tissue inflammation and mitochondrial dysfunction compared to lean controls and whether this is further exacerbated by obesity. Patients will be either undergoing emergency abdominal surgery, or will have been admitted to a critical care unit with a diagnosis of sepsis. The investigators will collect blood and adipose tissue biopsies from the patients, and these will be analysed for markers of inflammation and of mitochondrial function. The aim is to better understand the relationship between obesity, inflammation, mitochondrial dysfunction and sepsis. The investigators hope that this may improve the understanding of the pathophysiology of sepsis and allow more targeted interventions for patients based on differences in their baseline metabolic state.
In this prospective observational study, patients hospitalized in mixed intensive care unit, aged between 18 and 80, and diagnosed with sepsis and septic shock according to sepsis-3 criteria will be included. To determine whether patients develop AKI during the first five days of ICU admission, creatinine and urine output will be monitored daily for the first five days of ICU admission according to KDIGO criteria. Clinical diagnosis and treatment of AKI will be made according to KDIGO. According to KDIGO, patients will be divided into two groups: those who develop AKI and those who do not. By comparing plasma NGAL and VEXUS scores between groups, the sensitivity and specificity of the VEXUS score in determining AKI will be determined.
Rudiger and Singer suggested strategies for refining adrenergic stress (decatecholaminization). They proposed the use of dexmedetomidine and vasopressin to reduce the catecholamine load during sepsis. The investigators will use vasopressin as the primary vasopressor and a heart rate-calibrated dexmedetomidine infusion in septic shock patients. The investigators of the current study will use DEXPRESSIN in septic shock patients to investigate the effects of decatecholaminization on in-hospital mortality.
Prospective observational cohort study; pediatric sepsis vs. healthy pediatric subjects and pediatric sepsis with acute kidney injury (AKI) vs without AKI. Blood samples and renal ultrasound will be collected on sequential days for septic subject and one time for the healthy patients. Enzyme-linked immunosorbent assays (ELISA) with be run on serum plasma to compare the renin-angiotensin-aldosterone system (RAAS) between groups.
Plasma cardiac troponin (cTn) elevation is an indicator of increased mortality in patients with sepsis yet the underlying cause of troponin elevation in sepsis is not known. The COMTESS study investigates whether elevated high-sensitive cardiac Troponin T (hs-cTnT) levels in hemodynamically unstable patients with sepsis can be explained by an underlying coronary artery disease or a process within the coronary microcirculation. Fifty patients with sepsis and with hs-cTnT elevation (>15 ng/L) will undergo coronary angiography, including an assessment of coronary flow using a method called thermo-dilution to record the index of microcirculatory resistance (IMR) in the left anterior descending artery (LAD). The relationship between IMR and hs-cTnT will subsequently be analysed. It is important to identify the underlying causes of elevated cTn during sepsis to target further research with an aim to improve the survival in patients suffering from this condition.
The primary objective of the REACT randomized clinical trial (RCT) is to optimize the clinical benefit from adjunctive clarithromycin treatment shown in the ACCESS trial and to provide evidence for the clinical benefit of early start of adjunctive oral clarithromycin guided by suPAR to prevent the progression into sepsis in patients with community-acquired pneumonia (CAP) at risk. This can be achieved by endpoints incorporating clinical benefit with the effect of treatment on the improvement of the immune dysregulation of CAP. The secondary objectives of REACT are to investigate the impact of early adjunctive treatment with clarithromycin on the resolution of CAP at the test-of-cure (TOC) visit.
Thyroid and cortisol hormone response to sepsis