Clinical Trials Logo

Clinical Trial Summary

In 1994, the WHO and UNICEF Joint Committee on Health Policy recommended Universal Salt Iodization as a safe, cost-effective and sustainable strategy to ensure sufficient intake of iodine by all individuals. However, it is still absent in Latvia.

A recent countrywide study in 2013 shows iodine deficiency among pregnant women in Latvia: 81 % of pregnant women had UIC levels below the WHO recommended range of 150-250 mcg/g Cr.

Because mild to moderate iodine deficiency during pregnancy can adversely affect fetal brain development, WHO-UNICEF and ICCIDD advise an increase in the recommended daily dosage of iodine to 250 mcg/day for pregnant women and breastfeeding women and 150 mcg/day for women in the preconception period.

Data from a survey of the Latvian population indicate that approximately 100 mcg of iodine per day is consumed through foods and iodized salt. To meet the increased iodine requirement in pregnancy, pregnant women should take a supplement containing 150 mcg of iodine daily from the earliest time possible.

A sudden increase in iodine intake in an iodine-deficient population may increase thyroid autoimmunity. It is evident that thyroid disease has multiple adverse effects during pregnancy and in the developing fetus especially in women with elevated serum anti-thyroid antibody titers.

Studies have considered supplementing with selenium to reduce the risk of auto-immune thyroiditis/post-partum autoimmune thyroid disease. Of the 11 trials of selenium supplementation in patients with autoimmune thyroiditis, 7 have shown benefit with treatment for 6 months or longer.

Aim of study is to approve that 150 mcg of iodine daily improves iodine status in pregnant women and iodine 150 mcg in combination with selenium 100 mcg daily reduce risk of thyroid autoimmunity.

Hypothesis of study is that 150 mcg iodine daily during pregnancy improves iodine status. Iodine in combination with selenium is less associated with thyroid autoimmunity.

Study design: Pregnant women are randomized for either 150 mcg iodine intake daily or 150 mcg iodine combined with 100 mcg selenium daily. Interventional group is compared with controls without particular iodine supplementation.

Participants are asked to complete a questionnaire on dietary habits concerning iodine. Thyroid function (thyroid-stimulating hormone, free thyroxine) and thyroperoxidase antibodies (TPO-Ab) and urinary iodine are measured during first, second and third trimester of pregnancy and week 8 after delivery in both, intervention and control group.


Clinical Trial Description

In 1994, the WHO and UNICEF Joint Committee on Health Policy recommended Universal Salt Iodization as a safe, cost-effective and sustainable strategy to ensure sufficient intake of iodine by all individuals. However, universal salt iodization is still absent in Latvia.

A recent countrywide study in 2013 shows iodine deficiency among pregnant women in Latvia. The median Cr-standardized UIC was 80.8 (interquartile range (IQR) 46.1-130.6) mcg/g Cr or 69.4 (IQR 53.9-92.6) mcg/L during pregnancy, and 81 % of pregnant women had UIC levels below the WHO recommended range of 150-250 mcg/g Cr.

Because mild to moderate iodine deficiency during pregnancy can adversely affect fetal brain development, WHO-UNICEF and ICCIDD advise an increase in the recommended daily dosage of iodine to 250 mcg/day for pregnant women and breastfeeding women and 150 mcg/day for women in the preconception period.

Data from a survey of the Latvian population indicate that approximately 100 mcg of iodine per day is consumed through foods and iodized salt. To meet the increased iodine requirement in pregnancy, pregnant women should take a supplement containing 150 mcg of iodine daily from the earliest time possible.

A sudden increase in iodine intake in an iodine-deficient population may increase thyroid autoimmunity. Studies have connected induction of disease processes with thyroglobulin (Tg) iodination, because hypo-iodinated Tg did not activate T cells; however, increasing the Tg iodine content to even normal levels in vitro led to antigenicity of the molecule. It is evident that thyroid disease has multiple adverse effects during pregnancy and the postpartum period, and in the developing fetus especially in women with elevated serum anti-thyroid antibody titers.

Previous studies have considered supplementing with selenium to reduce the risk of auto-immune thyroiditis/post-partum autoimmune thyroid disease. Potential mechanisms may be related to the selenoenzyme, GPx3, removing excess H2O2 produced in the thyrocyte for the iodination of tyrosine to give thyroid hormones, thereby preventing thyrocyte damage. Additionally, selenoprotein S (SEPS1) is involved in the control of the inflammatory response in the endoplasmic reticulum. Of the 11 trials of selenium supplementation in patients with autoimmune thyroiditis, 7 have shown benefit with treatment for 6 months or longer.

Aim of study is to approve that 150 mcg of iodine daily improves iodine status in pregnant women and iodine 150 mcg in combination with selenium 100 mcg daily reduce risk of thyroid autoimmunity.

Hypothesis of study is that 150 mcg iodine daily during pregnancy improves iodine status. Iodine in combination with selenium is less associated with thyroid autoimmunity.

Study design: Pregnant women are randomized for either 150 mcg iodine intake daily or 150 mcg iodine combined with 100 mcg selenium daily. Interventional group is compared with controls without particular iodine supplementation.

Participants are asked to complete a questionnaire on dietary habits concerning iodine intake at the moment they are recruited for study, at third trimester of pregnancy and week 8 after delivery.

Thyroid function (thyroid-stimulating hormone (TSH), free thyroxine (fT4) and thyroperoxidase antibodies (TPO-Ab) measures are assessed during first, second and third trimester of pregnancy and week 8 after delivery in both, intervention and control group. Blood samples are sent to the E. Gulbis Laboratory (Riga, Latvia), which operates according to EN ISO 15189:2008 standard. TSH, fT4 and TPO-Ab are measured by chemiluminescence immunoassay (Siemens, Malvern, PA, USA).

Urinary iodine, using the ammonium persulfate method, is also measured in first, second, third trimester of pregnancy and postpartum week 8 in intervention and control groups.

The urinary creatinine concentration is measured using the Jaffe method with the intention that iodine concentration adjusted for creatinine concentration (iodine/Cr) could be calculated. Creatinine standardized UIC is a more reliable method of iodine excretion than random spot UIC measurement since there is a great day-to-day variability in water intake.

Statistical analysis includes pairwise comparison of 1) median (interquartile range) urinary iodine concentration, median (IQR) or mean (SD) TSH, and median (IQR) or mean (SD) fT4; 2) proportion (95%CI) of women with UIC below 150 mcg, TSH above trimester-specific norm, and positive TPO antibodies among all three study groups at specific follow-up intervals. Mann-Whitney U test or two-sided t-test is used for comparing continuous variables, whereas chi2 test (or Fisher exact test) is used to compare proportions. If significant differences observed at baseline, the change in those parameters from visit to visit is calculated and compared. Logistic regression analysis is used to compare intervention groups with control group in order to adjust for differences in baseline characteristics. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03377218
Study type Interventional
Source Riga Stradins University
Contact Ilze Konrade, professor
Phone 29140141
Email drkonrade@inbox.lv
Status Recruiting
Phase N/A
Start date January 5, 2018
Completion date January 2019

See also
  Status Clinical Trial Phase
Completed NCT03442582 - Afluria Pregnancy Registry
Terminated NCT02161861 - Improvement of IVF Fertilization Rates, by the Cyclic Tripeptide FEE - Prospective Randomized Study N/A
Not yet recruiting NCT05934318 - L-ArGinine to pRevent advErse prEgnancy Outcomes (AGREE) N/A
Enrolling by invitation NCT05415371 - Persistent Poverty Counties Pregnant Women With Medicaid N/A
Completed NCT04548102 - Effects of Fetal Movement Counting on Maternal and Fetal Outcome Among High Risk Pregnant Woman N/A
Completed NCT03218956 - Protein Requirement During Lactation N/A
Completed NCT02191605 - Computer-delivered Screening & Brief Intervention for Marijuana Use in Pregnancy N/A
Completed NCT02223637 - Meningococcal Quadrivalent CRM-197 Conjugate Vaccine Pregnancy Registry
Recruiting NCT06049953 - Maternal And Infant Antipsychotic Study
Completed NCT02577536 - PregSource: Crowdsourcing to Understand Pregnancy
Not yet recruiting NCT06336434 - CREATE - Cabotegravir & Rilpivirine Antiretroviral Therapy in Pregnancy Phase 1/Phase 2
Not yet recruiting NCT05412238 - Formulation and Evaluation of the Efficacy of Macro- and Micronutrient Sachets on Pregnant Mothers and Children Aged 6-60 Months N/A
Not yet recruiting NCT04786587 - Alcohol Self-reporting During Pregnancy. AUTOQUEST Study.
Not yet recruiting NCT05028387 - Telemedicine Medical Abortion Service Using the "No-test" Protocol in Ukraine and Uzbekistan.
Completed NCT02783170 - Safety and Immunogenicity of Simultaneous Tdap and IIV in Pregnant Women Phase 4
Completed NCT02683005 - Study of Hepatitis C Treatment During Pregnancy Phase 1
Recruiting NCT02619188 - Nutritional Markers in Normal and Hyperemesis Pregnancies N/A
Recruiting NCT02507180 - Safely Ruling Out Deep Vein Thrombosis in Pregnancy With the LEFt Clinical Decision Rule and D-Dimer
Recruiting NCT02564250 - Maternal Metabolism and Pregnancy Outcomes in Obese Pregnant Women N/A
Completed NCT02520687 - Effects of Dietary Nitrate in Hypertensive Pregnant Women Phase 1