Clinical Trials Logo

Secondary Acute Myeloid Leukemia clinical trials

View clinical trials related to Secondary Acute Myeloid Leukemia.

Filter by:

NCT ID: NCT01861314 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Bortezomib, Sorafenib Tosylate, and Decitabine in Treating Patients With Acute Myeloid Leukemia

Start date: July 3, 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and the best dose of bortezomib and sorafenib tosylate when given together with decitabine in treating patients with acute myeloid leukemia. Bortezomib and sorafenib tosylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving bortezomib and sorafenib tosylate together with decitabine may work better in treating acute myeloid leukemia.

NCT ID: NCT01839240 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Azacitidine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With High-Risk Acute Myeloid Leukemia

Start date: June 6, 2012
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of azacitidine when given together with cytarabine and mitoxantrone hydrochloride in treating patients with high-risk acute myeloid leukemia. Drugs used in chemotherapy, such as azacitidine, cytarabine, and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Azacitidine may also help cytarabine and mitoxantrone hydrochloride work better by making the cancer cells more sensitive to the drugs

NCT ID: NCT01801046 Terminated - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Donor Stem Cell Transplant in Treating Patients With High Risk Acute Myeloid Leukemia

Start date: March 6, 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects of donor stem cell transplant in treating patients with high risk acute myeloid leukemia. Giving low doses of chemotherapy before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells when they do not exactly match the patient's blood. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect)

NCT ID: NCT01798901 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

AR-42 and Decitabine in Treating Patients With Acute Myeloid Leukemia

Start date: September 17, 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of AR-42 when given together with decitabine in treating patients with acute myeloid leukemia. AR-42 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving AR-42 together with decitabine may kill more cancer cells.

NCT ID: NCT01760655 Completed - Clinical trials for Chronic Lymphocytic Leukemia

Reduced-Intensity Conditioning Before Donor Stem Cell Transplant in Treating Patients With High-Risk Hematologic Malignancies

Start date: December 24, 2012
Phase: Phase 2
Study type: Interventional

This phase II trial studies reduced-intensity conditioning before donor stem cell transplant in treating patients with high-risk hematologic malignancies. Giving low-doses of chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) before the transplant may help increase this effect.

NCT ID: NCT01707004 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Decitabine and Total-Body Irradiation Followed By Donor Bone Marrow Transplant and Cyclophosphamide in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

Start date: May 16, 2013
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well decitabine and total-body irradiation followed by donor bone marrow transplant and cyclophosphamide works in treating patients with relapsed or refractory acute myeloid leukemia. Giving decitabine and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving decitabine and total-body irradiation before the transplant together with high-dose cyclophosphamide, tacrolimus, and mycophenolate mofetil after the transplant may stop this from happening.

NCT ID: NCT01652014 Withdrawn - Clinical trials for Recurrent Mantle Cell Lymphoma

Single or Double Donor Umbilical Cord Blood Transplant in Treating Patients With High-Risk Hematologic Malignancies

Start date: January 2014
Phase: Phase 2
Study type: Interventional

This study will determine the safety and applicability of experimental forms of umbilical cord blood (UCB) transplantation for patients with high risk hematologic malignancies who might benefit from a hematopoietic stem cell transplant (HSCT) but who do not have a standard donor option (no available HLA-matched related donor (MRD), HLA-matched unrelated donor (MUD)), or single UCB unit with adequate cell number and HLA-match).

NCT ID: NCT01640301 Terminated - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Laboratory-Treated T Cells in Treating Patients With High-Risk Relapsed Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Chronic Myelogenous Leukemia Previously Treated With Donor Stem Cell Transplant

Start date: December 6, 2012
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects of laboratory-treated T cells and to see how well they work in treating patients with high-risk acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), or chronic myelogenous leukemia (CML) that has returned after a period of improvement (relapsed), previously treated with donor stem cell transplant. Biological therapies, such as cellular adoptive immunotherapy, may stimulate the immune system in different ways and stop cancer cells from growing. Placing a gene that has been created in the laboratory into a person's T cells may make the body build an immune response to kill cancer cells.

NCT ID: NCT01627041 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Decitabine, Cytarabine, and Daunorubicin Hydrochloride in Treating Patients With Acute Myeloid Leukemia

Start date: September 16, 2011
Phase: Phase 2
Study type: Interventional

This randomized phase II trial studies how well decitabine works when given together with daunorubicin hydrochloride and cytarabine in treating patients with acute myeloid leukemia. Drugs used in chemotherapy, such as decitabine, daunorubicin hydrochloride, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Decitabine may help daunorubicin hydrochloride and cytarabine kill more cancer cells by making them more sensitive to the drugs. It is not yet known whether low-dose decitabine is more effective than high-dose decitabine when giving together with daunorubicin hydrochloride and cytarabine in treating acute myeloid leukemia.

NCT ID: NCT01619761 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

NK Cells in Cord Blood Transplantation

Start date: May 3, 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best way to give natural killer cells and donor umbilical cord blood transplant in treating patients with hematological malignancies. Giving chemotherapy with or without total body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells and natural killer cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.