View clinical trials related to Secondary Acute Myeloid Leukemia.
Filter by:This phase II trial studies the best dose and how well liposomal cytarabine-daunorubicin CPX-351 (CPX-351) works in treating patients with newly diagnosed acute myeloid leukemia and who are at risk for not responding well to treatment. Liposomal cytarabine-daunorubicin CPX-351 combines two chemotherapy drugs that are known to help each other work better, and may work to stop the growth of cancer cells by blocking the cells from dividing.
This phase I trial studies the side effects and the best dose of genetically modified T-cells after lymphodepleting chemotherapy in treating patients with acute myeloid leukemia or blastic plasmacytoid dendritic cell neoplasm that has returned after a period of improvement or has not responded to previous treatment. An immune cell is a type of blood cell that can recognize and kill abnormal cells in the body. The immune cell product will be made from patient or patient's donor (related or unrelated) blood cells. The immune cells are changed by inserting additional pieces of deoxyribonucleic acid (DNA) (genetic material) into the cell to make it recognize and kill cancer cells. Placing a modified gene into white blood cells may help the body build an immune response to kill cancer cells.
This phase II trial studies how well lenalidomide works in treating patients with acute myeloid leukemia that have had a decrease in or disappearance of signs and symptoms of cancer, although cancer still may be in the body and may be likely to come back or spread. Biological therapies, such as lenalidomide, use substances made from living organisms that may kill cancer cells by blocking blood flow to the cancer and by stimulating white blood cells to kill the cancer cells.
This phase II trial studies how well cladribine, idarubicin, cytarabine, and venetoclax work in patients with acute myeloid leukemia, high-risk myelodysplastic syndrome, or blastic phase chronic myeloid leukemia. Drugs used in chemotherapy, such as cladribine, idarubicin, cytarabine, and venetoclax, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase I trial studies the side effects and best dose of Selinexor when given together with decitabine in treating patients with acute myeloid leukemia that has returned after treatment (relapsed) or does not respond to treatment (refractory). Drugs used in chemotherapy, such as decitabine and Selinexor, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.
This randomized phase III trial studies clofarabine to see how well it works compared with daunorubicin hydrochloride and cytarabine when followed by decitabine or observation in treating older patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as clofarabine, daunorubicin hydrochloride, cytarabine, and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which chemotherapy regimen is more effective in treating acute myeloid leukemia.
This phase II trial studies how well eltrombopag olamine works in improving the recovery of platelet counts in older patients with Acute Myeloid Leukemia (AML) undergoing induction (the first treatment given for a disease) chemotherapy. Platelet counts recover more slowly in older patients, leading to risk of complications and the delay of post-remission therapy. Eltrombopag olamine may cause the body to make platelets after chemotherapy.
This phase I/II trial studies the side effects and best dose of mitoxantrone hydrochloride when given together with filgrastim, cladribine, and cytarabine and to see how well they work in treating patients with acute myeloid leukemia or high-risk myelodysplastic syndromes that is newly diagnosed, has returned, or does not respond to treatment. Drugs used in chemotherapy, such as filgrastim, cladribine, cytarabine, and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase II trial studies the side effects and how well omacetaxine mepesuccinate, cytarabine, and decitabine work in treating older patients with newly diagnosed acute myeloid leukemia. Omacetaxine mepesuccinate, cytarabine, and decitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I/II trial studies the side effects and best dose of dasatinib when given together with cytarabine and idarubicin hydrochloride and to see how well they work in treating patients with acute myeloid leukemia that is likely to come back or spread. Dasatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and idarubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with cytarabine and idarubicin hydrochloride may be a better treatment for acute myeloid leukemia.