Clinical Trials Logo

Secondary Acute Myeloid Leukemia clinical trials

View clinical trials related to Secondary Acute Myeloid Leukemia.

Filter by:

NCT ID: NCT02286726 Completed - Clinical trials for Acute Myeloid Leukemia

CPX-351 in Treating Patients With Newly Diagnosed, High-Risk Acute Myeloid Leukemia

Start date: May 4, 2015
Phase: Phase 2
Study type: Interventional

This phase II trial studies the best dose and how well liposomal cytarabine-daunorubicin CPX-351 (CPX-351) works in treating patients with newly diagnosed acute myeloid leukemia and who are at risk for not responding well to treatment. Liposomal cytarabine-daunorubicin CPX-351 combines two chemotherapy drugs that are known to help each other work better, and may work to stop the growth of cancer cells by blocking the cells from dividing.

NCT ID: NCT02159495 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia and Persistent/Recurrent Blastic Plasmacytoid Dendritic Cell Neoplasm

Start date: December 15, 2015
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and the best dose of genetically modified T-cells after lymphodepleting chemotherapy in treating patients with acute myeloid leukemia or blastic plasmacytoid dendritic cell neoplasm that has returned after a period of improvement or has not responded to previous treatment. An immune cell is a type of blood cell that can recognize and kill abnormal cells in the body. The immune cell product will be made from patient or patient's donor (related or unrelated) blood cells. The immune cells are changed by inserting additional pieces of deoxyribonucleic acid (DNA) (genetic material) into the cell to make it recognize and kill cancer cells. Placing a modified gene into white blood cells may help the body build an immune response to kill cancer cells.

NCT ID: NCT02126553 Completed - Clinical trials for Secondary Acute Myeloid Leukemia

Lenalidomide in Treating Patients With High Risk Acute Myeloid Leukemia in Remission

Start date: November 13, 2014
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well lenalidomide works in treating patients with acute myeloid leukemia that have had a decrease in or disappearance of signs and symptoms of cancer, although cancer still may be in the body and may be likely to come back or spread. Biological therapies, such as lenalidomide, use substances made from living organisms that may kill cancer cells by blocking blood flow to the cancer and by stimulating white blood cells to kill the cancer cells.

NCT ID: NCT02115295 Recruiting - Clinical trials for Acute Myeloid Leukemia

Cladribine, Idarubicin, Cytarabine, and Venetoclax in Treating Patients With Acute Myeloid Leukemia, High-Risk Myelodysplastic Syndrome, or Blastic Phase Chronic Myeloid Leukemia

Start date: May 19, 2014
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well cladribine, idarubicin, cytarabine, and venetoclax work in patients with acute myeloid leukemia, high-risk myelodysplastic syndrome, or blastic phase chronic myeloid leukemia. Drugs used in chemotherapy, such as cladribine, idarubicin, cytarabine, and venetoclax, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

NCT ID: NCT02093403 Completed - Clinical trials for Acute Myeloid Leukemia

Decitabine and Selinexor in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

Start date: March 2014
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of Selinexor when given together with decitabine in treating patients with acute myeloid leukemia that has returned after treatment (relapsed) or does not respond to treatment (refractory). Drugs used in chemotherapy, such as decitabine and Selinexor, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.

NCT ID: NCT02085408 Active, not recruiting - Clinical trials for Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities

Clofarabine or Daunorubicin Hydrochloride and Cytarabine Followed By Decitabine or Observation in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

Start date: February 4, 2011
Phase: Phase 3
Study type: Interventional

This randomized phase III trial studies clofarabine to see how well it works compared with daunorubicin hydrochloride and cytarabine when followed by decitabine or observation in treating older patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as clofarabine, daunorubicin hydrochloride, cytarabine, and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which chemotherapy regimen is more effective in treating acute myeloid leukemia.

NCT ID: NCT02071901 Active, not recruiting - Clinical trials for Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities

Eltrombopag Olamine in Improving Platelet Recovery in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy

Start date: August 14, 2014
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well eltrombopag olamine works in improving the recovery of platelet counts in older patients with Acute Myeloid Leukemia (AML) undergoing induction (the first treatment given for a disease) chemotherapy. Platelet counts recover more slowly in older patients, leading to risk of complications and the delay of post-remission therapy. Eltrombopag olamine may cause the body to make platelets after chemotherapy.

NCT ID: NCT02044796 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Filgrastim, Cladribine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Newly Diagnosed or Relapsed/Refractory Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes

Start date: January 23, 2014
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of mitoxantrone hydrochloride when given together with filgrastim, cladribine, and cytarabine and to see how well they work in treating patients with acute myeloid leukemia or high-risk myelodysplastic syndromes that is newly diagnosed, has returned, or does not respond to treatment. Drugs used in chemotherapy, such as filgrastim, cladribine, cytarabine, and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

NCT ID: NCT02029417 Terminated - Clinical trials for Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities

Omacetaxine Mepesuccinate, Cytarabine, and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

Start date: July 2014
Phase: Phase 2
Study type: Interventional

This phase II trial studies the side effects and how well omacetaxine mepesuccinate, cytarabine, and decitabine work in treating older patients with newly diagnosed acute myeloid leukemia. Omacetaxine mepesuccinate, cytarabine, and decitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01876953 Terminated - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Dasatinib, Cytarabine, and Idarubicin in Treating Patients With High-Risk Acute Myeloid Leukemia

Start date: September 13, 2013
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of dasatinib when given together with cytarabine and idarubicin hydrochloride and to see how well they work in treating patients with acute myeloid leukemia that is likely to come back or spread. Dasatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and idarubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with cytarabine and idarubicin hydrochloride may be a better treatment for acute myeloid leukemia.