Clinical Trials Logo

Clinical Trial Summary

Kynurenic acid (KYNA) is a naturally occurring chemical in the brain. Studies with rodents indicate that levels of KYNA can impact levels of the neurotransmitters glutamate and dopamine. One way to reliably increase KYNA levels is by ingesting the amino acid tryptophan. Tryptophan is a normal part of the human diet. Tryptophan gets metabolized/changed to other chemicals in the body- including KYNA. By giving people 6 grams of tryptophan, the investigators will be able to increase the KYNA level in a controlled way. The investigators will then be able to study the effects of KYNA on neurotransmitters by using cognitive tests and magnetic resonance imaging techniques (measuring brain activity and brain chemistry using the MRI magnet). The overall goal of the study is to examine how the medication N-acetylcysteine (NAC), when added to tryptophan, affects various cognitive functions, such as verbal and visual memory. The investigators will also use magnetic resonance imaging (MRI) to examine how NAC affects brain activity and chemicals.


Clinical Trial Description

The purpose of the study is to examine whether high dose N-acetylcysteine (NAC) blocks the adverse effects of increased kynurenic acid (KYNA) on selected measures of brain chemistry, function and behavior, through the inhibition of kynurenine aminotransferase (KAT) II, which converts kynurenine to KYNA. The study will be a double-blind, placebo-controlled, randomized cross-over challenge study, in which people with schizophrenia are pretreated with either high-dose NAC, 140 mg/kg up to a maximum of 15 g, or placebo, then receive tryptophan (TRYP), 6 gms. The tryptophan challenge method robustly increases peripheral measures of kynurenine and KYNA in humans and putatively increases brain KYNA levels, through the CNS conversion of kynurenine to KYNA; a process that is observed in both rodents and nonhuman primates. The investigators will evaluate the ability of NAC to inhibit the conversion of kynurenine to KYNA with the following primary outcome measures: 1) the investigators will measure serum kynurenine and KYNA before and after NAC/placebo pre-treatment and TRYP administration and examine whether NAC compared to placebo blocks the peripheral conversion of kynurenine to KYNA; 2) the investigators will use the arterial spin labeling (ASL) technique to measure whole brain and frontal gray matter cerebral blood flow (CBF) before and after NAC/placebo pre-treatment and TRYP administration and examine whether NAC compared to placebo attenuates the effects of TRYP on ASL CBF measures; 3) the investigators will use magnetic resonance spectroscopy (MRS) to measure glutamate and glutathione levels in the medial prefrontal cortex (mPFC) before and after NAC/placebo pre-treatment and TRYP administration and examine whether NAC compared to placebo increases MRS glutathione and glutamate measures; and 4) the investigators will use diffusion tensor imaging (DTI) to measure white matter fractional anisotropy (FA) before and after NAC/placebo pre-treatment and TRYP administration and examine whether NAC compared to placebo increases white matter FA. The investigators will have two secondary endpoints. First, if the investigators observe that NAC attenuates the effects of TRYP on ASL and/or increases mPFC glutamate levels or white matter DTI FA, then the investigators will examine whether these effects are related to changes in cognitive measures of attention, verbal and visual memory, and working memory. Second, the investigators will use measures of serum KYNA and peripheral blood mononuclear cell (PBMC) kynurenine 3-monooxygenase (KMO) activity levels to examine whether the level of these measures is related to the observed effects of NAC on our neuroimaging and cognitive outcome measures. The investigators hypothesize that NAC will inhibit KAT II, which will be reflected in the: 1) decreased peripheral conversion of kynurenine to KYNA; and 2) increased CBF, glutamate, and white matter fractional anisotropy (FA). In addition, the investigators hypothesize that the NAC effects on the neuroimaging measures will be related to improved performance on cognitive measures of attention, verbal and visual memory and working memory. These observed effects of NAC will be greater than those seen with placebo. The investigators further hypothesize that the NAC effects on ASL CBF, glutamate, and FA measures will be independent of NAC-induced changes in MRS glutathione, i.e., not due to the NAC oxidative stress mechanism, but, rather, will be correlated with NAC-induced reductions in the peripheral conversion of kynurenine to KYNA. Finally, the investigators hypothesize that the observed effects of NAC on CBF, glutamate, and FA will be related to baseline serum KMO activity and KYNA levels. The demonstration that NAC reverses the adverse impact of increased KYNA levels will importantly support the development of KAT II inhibitors for the enhancement of cognition in schizophrenia. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04013555
Study type Interventional
Source University of Maryland, Baltimore
Contact Jennifer Zaranski, MA
Phone 410-402-6060
Email jzaranski@som.umaryland.edu
Status Recruiting
Phase Phase 1/Phase 2
Start date January 20, 2020
Completion date June 30, 2024

See also
  Status Clinical Trial Phase
Recruiting NCT05039489 - A Study on the Brain Mechanism of cTBS in Improving Medication-resistant Auditory Hallucinations in Schizophrenia N/A
Completed NCT05111548 - Brain Stimulation and Cognitive Training - Efficacy N/A
Completed NCT05321602 - Study to Evaluate the PK Profiles of LY03010 in Patients With Schizophrenia or Schizoaffective Disorder Phase 1
Completed NCT04503954 - Efficacy of Chronic Disease Self-management Program in People With Schizophrenia N/A
Completed NCT02831231 - Pilot Study Comparing Effects of Xanomeline Alone to Xanomeline Plus Trospium Phase 1
Completed NCT05517460 - The Efficacy of Auricular Acupressure on Improving Constipation Among Residents in Community Rehabilitation Center N/A
Completed NCT03652974 - Disturbance of Plasma Cytokine Parameters in Clozapine-Resistant Treatment-Refractory Schizophrenia (CTRS) and Their Association With Combination Therapy Phase 4
Recruiting NCT04012684 - rTMS on Mismatch Negativity of Schizophrenia N/A
Recruiting NCT04481217 - Cognitive Factors Mediating the Relationship Between Childhood Trauma and Auditory Hallucinations in Schizophrenia N/A
Completed NCT00212784 - Efficacy and Safety of Asenapine Using an Active Control in Subjects With Schizophrenia or Schizoaffective Disorder (25517)(P05935) Phase 3
Completed NCT04092686 - A Clinical Trial That Will Study the Efficacy and Safety of an Investigational Drug in Acutely Psychotic People With Schizophrenia Phase 3
Completed NCT01914393 - Pediatric Open-Label Extension Study Phase 3
Recruiting NCT03790345 - Vitamin B6 and B12 in the Treatment of Movement Disorders Induced by Antipsychotics Phase 2/Phase 3
Recruiting NCT05956327 - Insight Into Hippocampal Neuroplasticity in Schizophrenia by Investigating Molecular Pathways During Physical Training N/A
Terminated NCT03261817 - A Controlled Study With Remote Web-based Adapted Physical Activity (e-APA) in Psychotic Disorders N/A
Terminated NCT03209778 - Involuntary Memories Investigation in Schizophrenia N/A
Completed NCT02905604 - Magnetic Stimulation of the Brain in Schizophrenia or Depression N/A
Recruiting NCT05542212 - Intra-cortical Inhibition and Cognitive Deficits in Schizophrenia N/A
Completed NCT04411979 - Effects of 12 Weeks Walking on Cognitive Function in Schizophrenia N/A
Terminated NCT03220438 - TMS Enhancement of Visual Plasticity in Schizophrenia N/A