Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02067975
Other study ID # HP-00057861
Secondary ID 1P50MH103222-01
Status Completed
Phase Phase 2/Phase 3
First received
Last updated
Start date September 2014
Est. completion date December 2019

Study information

Verified date October 2019
Source University of Maryland, Baltimore
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Kynurenic acid (KYNA) is a naturally occurring chemical in the brain. Studies with rodents indicate that levels of KYNA can impact levels of the neurotransmitters glutamate and dopamine. One way to reliably increase KYNA levels is by ingesting the amino acid tryptophan. Tryptophan is a normal part of the human diet. Tryptophan gets metabolized/changed to other chemicals in the body- including KYNA. By giving people 6 grams of tryptophan, the investigators will be able to increase the KYNA level in a controlled way. The investigators will then be able to study the effects of KYNA on neurotransmitters by using cognitive tests and magnetic resonance imaging techniques (measuring brain activity and brain chemistry using the MRI magnet). They will test people using tryptophan and also using a placebo to look for differences. The investigators will test healthy controls and people with schizophrenia to look for differences.


Description:

There is emerging evidence to suggest that disturbances in the kynurenine pathway may be related to the pathophysiology of schizophrenia. Several post-mortem studies have documented specific abnormalities in the kynurenine pathway, including increased levels of kynurenine and kynurenic acid (KYNA) in the prefrontal cortex of people with schizophrenia (1-4). Increased levels of kynurenine and KYNA have also been observed in the cerebral spinal fluid (CSF) of people with this illness (5). In addition, post-mortem studies have documented changes in key enzymes, including increased expression of tryptophan 2,3-dioxygenase (2, 6) (TDO), which converts tryptophan to kynurenine, and reduced activity of kynurenine 3-monooxygenase (KMO) (4), which may shift metabolism towards enhanced KYNA formation. Finally, a number of genetic studies have implicated the KYNA pathway in this disease. Wonodi et al. (7) found decreased KMO gene expression in the frontal eye field of people with schizophrenia, and Holtze et al. (8) recently reported an association between a KMO SNP and CSF levels of KYNA. Notably, although the exact mechanism underlying the KP impairment in people with schizophrenia is unknown, immune and stress mechanisms have been implicated (7,9). Increased KYNA may have a number of adverse consequences of importance in schizophrenia. In particular, KYNA is an antagonist of the α7 nicotinic and NMDA glutamate receptors. Dysfunctions of these receptors have been linked to the cognitive impairments and symptom manifestations observed in people with schizophrenia. The purpose of the proposed project is to examine the impact of increased brain KYNA on performance of cognitive tasks and related neuroimaging measures in people with DSM-5/DSM-IV-TR schizophrenia, schizophreniform, or schizoaffective disorder patients and healthy controls. In addition, the investigators will secondarily investigate the relationship of peripheral inflammatory markers and glucocorticoid levels as part of the HPA stress axis to examine relationships and shift to a Type 2 immune response in schizophrenia. Using tryptophan loading to increase KYNA levels, the study will test the hypothesis, based on complementary preliminary studies in rodents, that disease-related cognitive deficits in people with schizophrenia are preferentially susceptible to (further) elevations in KYNA levels. The investigators hypothesize that tryptophan-induced elevations in brain KYNA levels will: 1) acutely impair performance on measures of verbal and visual memory, attention, working memory, and processing speed in people with schizophrenia; 2) alter dorsolateral-hippocampal activation and connectivity, which underlies the performance of the relational memory task; and 3) decrease mPFC MRS measures of glutamate, consistent with preclinical microdialysis data. In an exploratory framework, the investigators hypothesize that increased brain KYNA levels alter default network activation and connectivity, an effect which may be mediated by the action of KYNA on α7 nicotinic and/or NMDA receptors. The investigators will also investigate the extent to which cytokine and HPA axis peripheral measures are related to the effect of tryptophan-induced elevated KYNA levels on cognitive performance and fMRI and MRS measures. Comparisons with results from healthy controls will determine if participants with schizophrenia have an aberrant or exaggerated response to increased KYNA levels. Funding Information: Funded by the National Institute of Mental Health (NIMH) Grant Number- 1P50MH103222-01 Principal Investigator- Robert Schwarcz, PhD Project Title- Kynurenic Acid and Cognitive Abnormalities in Schizophrenia Program Officer Full Name- Steven Zalcamn External Org# Name- University of Maryland, Baltimore


Recruitment information / eligibility

Status Completed
Enrollment 93
Est. completion date December 2019
Est. primary completion date December 2019
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years to 55 Years
Eligibility Inclusion Criteria (Schizophrenia: - Males and females between the ages of 18 and 55 years - Has met DSM-IV-TR/DSM-5 Criteria for schizophrenia, schizoaffective disorder or schizophreniform disorder - Prescription of antipsychotic medication for at least 60 days and constant dose for 30 days prior to study entry (either first or second generation antipsychotics permitted) - Women must be in the first half of their menstrual cycle at the time of the 2 challenge visits Inclusion Criteria (Healthy Controls): - Males and females between the ages of 18 and 55 years - No DSM-IV-TR/DSM-5 Axis I Disorder (documented by SCID) - Women must be in the first half of their menstrual cycle at the time of the 2 challenge visits Exclusion Criteria: - DSM-IV-TR/DSM-5 substance abuse in the last month or substance dependence in the last 6 months (documented by SCID) - Calgary Depression Scale total score = 10 at baseline - Current smoker (expired CO = 10 ppm) - Current use of nicotine replacement therapy or other nicotine products - Pregnancy or breast feeding - Post-menopausal women will not be included due to changes in the HPA axis expression and hormonal effects on cognition. In women over the age of 45, menopausal status will be evaluated clinically - Excessive self-reported daily caffeine intake, defined as intake exceeding 1000 mg or the equivalent of 8 cups of coffee - Active disorders that have been reported to affect tryptophan metabolism or interfere with absorption will be excluded (Acute Intermittent Porphyria, Celiac Disease, Crohn's Disease, Irritable Bowel Syndrome - History of an organic brain disorder; mental retardation; or a medical condition, whose pathology or treatment could alter cognition - Claustrophobia - Metal in body that will interfere with MR imaging - Treatment with monoamine oxidase inhibitors, migraine headache medications (triptans) and dextromethorphan

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Tryptophan

Placebo


Locations

Country Name City State
United States Maryland Psychiatric Research Center Catonsville Maryland

Sponsors (3)

Lead Sponsor Collaborator
University of Maryland, Baltimore Mitsubishi Tanabe Pharma Corporation, National Institute of Mental Health (NIMH)

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Change in Verbal Memory Scores From Baseline to 4 Hours Post-Treatment The following assessment was used to assess the outcome measure: the Hopkins Verbal Learning Test-Revised (HVLT-R). HVLT total scores range from 0 to 36. In order to conduct group comparisons, the HVLT raw total scores are converted to a t-score (range: -10 to 80). The mean t-scores for each condition are below (see outcome measure data table). Higher scores represent better performance. Participants performed the same task before pre- and post-treatment with Tryptophan and again with placebo (2 weeks between conditions). Change in scores pre- and post-treatment were compared between the Tryptophan and placebo conditions. The order in which participants received either the tryptophan or placebo was randomized. The HVLT was administered 90 minutes prior to treatment and 4 hours post treatment. There were at least two weeks between the challenge days.
See also
  Status Clinical Trial Phase
Recruiting NCT05039489 - A Study on the Brain Mechanism of cTBS in Improving Medication-resistant Auditory Hallucinations in Schizophrenia N/A
Completed NCT05321602 - Study to Evaluate the PK Profiles of LY03010 in Patients With Schizophrenia or Schizoaffective Disorder Phase 1
Completed NCT05111548 - Brain Stimulation and Cognitive Training - Efficacy N/A
Completed NCT04503954 - Efficacy of Chronic Disease Self-management Program in People With Schizophrenia N/A
Completed NCT02831231 - Pilot Study Comparing Effects of Xanomeline Alone to Xanomeline Plus Trospium Phase 1
Completed NCT05517460 - The Efficacy of Auricular Acupressure on Improving Constipation Among Residents in Community Rehabilitation Center N/A
Completed NCT03652974 - Disturbance of Plasma Cytokine Parameters in Clozapine-Resistant Treatment-Refractory Schizophrenia (CTRS) and Their Association With Combination Therapy Phase 4
Recruiting NCT04012684 - rTMS on Mismatch Negativity of Schizophrenia N/A
Recruiting NCT04481217 - Cognitive Factors Mediating the Relationship Between Childhood Trauma and Auditory Hallucinations in Schizophrenia N/A
Completed NCT00212784 - Efficacy and Safety of Asenapine Using an Active Control in Subjects With Schizophrenia or Schizoaffective Disorder (25517)(P05935) Phase 3
Completed NCT04092686 - A Clinical Trial That Will Study the Efficacy and Safety of an Investigational Drug in Acutely Psychotic People With Schizophrenia Phase 3
Completed NCT01914393 - Pediatric Open-Label Extension Study Phase 3
Recruiting NCT03790345 - Vitamin B6 and B12 in the Treatment of Movement Disorders Induced by Antipsychotics Phase 2/Phase 3
Recruiting NCT05956327 - Insight Into Hippocampal Neuroplasticity in Schizophrenia by Investigating Molecular Pathways During Physical Training N/A
Terminated NCT03261817 - A Controlled Study With Remote Web-based Adapted Physical Activity (e-APA) in Psychotic Disorders N/A
Terminated NCT03209778 - Involuntary Memories Investigation in Schizophrenia N/A
Completed NCT02905604 - Magnetic Stimulation of the Brain in Schizophrenia or Depression N/A
Recruiting NCT05542212 - Intra-cortical Inhibition and Cognitive Deficits in Schizophrenia N/A
Completed NCT04411979 - Effects of 12 Weeks Walking on Cognitive Function in Schizophrenia N/A
Terminated NCT03220438 - TMS Enhancement of Visual Plasticity in Schizophrenia N/A