View clinical trials related to Sarcoma, Synovial.
Filter by:This is a Phase I, open-label, dose escalation and dose expansion study with BID (suspension) and TID (tablet) oral dose of tazemetostat. Subjects will be screened for eligibility within 14 days of the planned first dose of tazemetostat. A treatment cycle will be 28 days. Response assessment will be evaluated after 8 weeks of treatment and subsequently every 8 weeks while on study. The study has two parts: Dose Escalation and Dose Expansion. Dose escalation for subjects with the following relapsed/refractory malignancies: - Rhabdoid tumors: - Atypical teratoid rhabdoid tumor (ATRT) - Malignant rhabdoid tumor (MRT) - Rhabdoid tumor of kidney (RTK) - Selected tumors with rhabdoid features - INI1-negative tumors: - Epithelioid sarcoma - Epithelioid malignant peripheral nerve sheath tumor - Extraskeletal myxoid chondrosarcoma - Myoepithelial carcinoma - Renal medullary carcinoma - Other INI1-negative malignant tumors (e.g., dedifferentiated chordoma) (with Sponsor approval) - Synovial Sarcoma with a SS18-SSX rearrangement Dose Escalation cohorts are closed to enrollment. Dose Expansion at the MTD or the RP2D - Cohort 1 - ATRT (closed to enrollment) - Cohort 2 - MRT/RTK/selected tumors with rhabdoid features (closed to enrollment) - Cohort 3 - INI-negative tumors: - Epithelioid sarcoma - Epithelioid malignant peripheral nerve sheath tumor - Extraskeletal myxoid chondrosarcoma - Myoepithelial carcinoma - Renal medullary carcinoma - Chordoma (poorly differentiated or de-differentiated) - Other INI1-negative malignant tumors (e.g., dedifferentiated chordoma) with Sponsor approval - Cohort 4 - Tumor types eligible for Cohorts 1 through 3 or synovial sarcoma with SS18-SSX rearrangement (closed to enrollment)
This phase I/II trial studies the side effects and best dose of sapanisertib and to see how well it works compared to pazopanib hydrochloride in treating patients with sarcoma that is too large to be removed (locally advanced) or has spread to other areas of the body (metastatic). Sapanisertib and pazopanib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
The purpose of this research study is to look at whether giving a drug called dexrazoxane with standard of care doxorubicin affects the progression of the disease. Dexrazoxane is often given at the same time as doxorubicin to help reduce the incidence and severity of disease of the heart muscle (which can be caused by doxorubicin). In January 2019 Eli Lilly and Company reported that the results of the Phase 3 study of olaratumab (Lartruvo), in combination with doxorubicin in patients with advanced or metastatic soft tissue sarcoma, did not confirm the clinical benefit of olaratumab in combination with doxorubicin as compared to doxorubicin alone. Therefore olaratumab is being removed from the front line standard of care regimen. Amendment #9 was made to the protocol to reflect these changes to the standard of care treatment.
Background: Autologous T cells engineered to express a T cell receptor (TCR) targeting NY-ESO-1 will be infused back to patients with NY-ESO-1- expressing malignancies. The patients pretreated with a lymphodepleting preconditioning regimen will be monitored after infusion of anti-NY-ESO-1 TCR-transduced T cells for adverse events, persistence of anti-NY-ESO-1 TCR-transduced T cells and treatment efficacy. Objectives: To evaluate the safety and the efficacy of anti-NY-ESO-1 TCR-transduced T cell-based immunotherapy for patients with NY-ESO-1- expressing malignancies. Eligibility: Patients older than one year of age, who have relapsed or refractory malignancies that express both NY-ESO-1 and human leukocyte antigen (HLA)-A2 molecules. Patients must have adequate organ functions. Design: - Peripheral blood from patients will be collected for isolation of peripheral blood mononuclear cells (PBMCs), which will be transduced with a lentiviral or retroviral vector encoding an HLA-A2 restricted anti-NY-ESO-1 TCR gene. - Patients will receive a lymphodepleting preconditioning regimen to prepare their immune system to accept modified T cells. - Patients will receive an infusion of their own modified T cells. They will remain in the hospital to be monitored for adverse events until they have recovered from the treatment. - Patients will have frequent follow-up visits to monitor the persistence of modified T cells and efficacy of the treatment.
This phase II trial studies how well lorvotuzumab mertansine works in treating younger patients with Wilms tumor, rhabdomyosarcoma, neuroblastoma, pleuropulmonary blastoma, malignant peripheral nerve sheath tumor (MPNST), or synovial sarcoma that has returned or that does not respond to treatment. Antibody-drug conjugates, such as lorvotuzumab mertansine, are created by attaching an antibody (protein used by the body?s immune system to fight foreign or diseased cells) to an anti-cancer drug. The antibody is used to recognize tumor cells so the anti-cancer drug can kill them.
The purpose of this study is to find out what effects, good and/or bad, radiation has on the lungs has on the patient and on synovial sarcoma which has spread to the lungs. The standard treatment for synovial sarcoma which has spread to the lungs is chemotherapy with or without surgery to remove the tumors in the lungs. However, tumors often come back in the lungs after chemotherapy and/or surgery. Since synovial sarcoma is known to be sensitive to radiation, this study is looking at whether radiation therapy which is targeted to the entire lung can further reduce the chances of the cancer returning. This type of radiation is commonly used in other types of sarcoma to treat the cancer once it has spread to the lungs and it may be very useful in synovial sarcoma as well. In this study, a special type of radiation will be used, called Intensity Modulated Radiation Therapy (IMRT). With IMRT the radiation beams are more customized to focus more radiation on the tumor cells while delivering less radiation to areas like the heart. The goal of this study is also to measure pulmonary toxicity and see if IMRT is feasible and has less toxicity.
This randomized phase II/III trial studies how well pazopanib, when combined with chemotherapy and radiation therapy or radiation therapy alone, work in the treatment of patients with newly diagnosed non-rhabdomyosarcoma soft tissue sarcomas that can eventually be removed by surgery. Radiation therapy uses high energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as ifosfamide and doxorubicin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Pazopanib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether these therapies can be safely combined and if they work better when given together in treating patients with non-rhabdomyosarcoma soft tissue sarcomas.
This phase I trial studies the side effects and best way to give NY-ESO-1 specific T cells after cyclophosphamide in treating patients with advanced synovial sarcoma or myxoid/round cell liposarcoma. Placing a gene that has been created in the laboratory into white blood cells may make the body build an immune response to kill tumor cells. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving NY-ESO-1 specific T cells with cyclophosphamide may kill more tumor cells.
This pilot clinical trial studies the effect of recombinant interferon gamma on tissue in treating patients with soft tissue sarcoma. Interferon gamma may interfere with the growth of tumor cells.
This application proposes a prospective clinical trial to evaluate the impact of adding a focused physical therapy (PT) intervention to the preoperative regimen of individuals diagnosed with a malignancy of the lower extremity (LE). The primary aim will be to determine if individuals diagnosed with a malignancy of the LE can participate in a 10 week preoperative strengthening, stretching, and aerobic exercise regimen.