Clinical Trials Logo

Sarcoma, Ewing clinical trials

View clinical trials related to Sarcoma, Ewing.

Filter by:

NCT ID: NCT03911388 Active, not recruiting - Neoplasms Clinical Trials

HSV G207 in Children With Recurrent or Refractory Cerebellar Brain Tumors

Start date: September 12, 2019
Phase: Phase 1
Study type: Interventional

This study is a clinical trial to determine the safety of inoculating G207 (an experimental virus therapy) into a recurrent or refractory cerebellar brain tumor. The safety of combining G207 with a single low dose of radiation, designed to enhance virus replication, tumor cell killing, and an anti-tumor immune response, will also be tested. Funding Source- FDA OOPD

NCT ID: NCT03778996 Active, not recruiting - Sarcoma Clinical Trials

SM-88 Maintenance Therapy for Advanced Ewing's Sarcoma and as Salvage Therapy for Sarcoma

HopES
Start date: January 3, 2020
Phase: Phase 2
Study type: Interventional

The primary objective is to evaluate the efficacy of SM-88, a combination metabolic cancer treatment, in two study cohorts: - Clinically advanced Ewing's Sarcoma patients who have not progressed at the conclusion of systemic treatment - Clinically advanced sarcoma patients in the salvage treatment setting Up to 24 efficacy evaluable patients (up to 12 per cohort) will be enrolled. Study patients will receive oral SM-88, with scheduled safety and efficacy evaluations.

NCT ID: NCT03709680 Active, not recruiting - Solid Tumors Clinical Trials

Study Of Palbociclib Combined With Chemotherapy In Pediatric Patients With Recurrent/Refractory Solid Tumors

Start date: May 24, 2019
Phase: Phase 1/Phase 2
Study type: Interventional

A study to learn about safety and find out maximum tolerable dose of palbociclib given in combination with chemotherapy (temozolomide with irinotecan or topotecan with cyclophosphamide) in children, adolescents and young adults with recurrent or refractory solid tumors (phase 1). Neuroblastoma tumor specific cohort to further evaluate antitumor activity of palbociclib in combination with topotecan and cyclophosphamide in children, adolescents, and young adults with recurrent or refractory neuroblastoma. Phase 2 to learn about the efficacy of palbociclib in combination with irinotecan and temozolomide when compared with irinotecan and temozolomide alone in the treatment of children, adolescents, and young adults with recurrent or refractory Ewing sarcoma (EWS).

NCT ID: NCT03698994 Active, not recruiting - Clinical trials for Advanced Malignant Solid Neoplasm

Ulixertinib in Treating Patients With Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With MAPK Pathway Mutations (A Pediatric MATCH Treatment Trial)

Start date: November 14, 2018
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.

NCT ID: NCT03635632 Active, not recruiting - Uveal Melanoma Clinical Trials

C7R-GD2.CART Cells for Patients With Relapsed or Refractory Neuroblastoma and Other GD2 Positive Cancers (GAIL-N)

Start date: April 23, 2019
Phase: Phase 1
Study type: Interventional

This study is for patients with neuroblastoma, sarcoma, uveal melanoma, breast cancer, or another cancer that expresses a substance on the cancer cells called GD2. The cancer has either come back after treatment or did not respond to treatment. Because there is no standard treatment at this time, patients are asked to volunteer in a gene transfer research study using special immune cells called T cells. T cells are a type of white blood cell that helps the body fight infection. The body has different ways of fighting infection and disease. No single way seems perfect for fighting cancers. This research study combines two different ways of fighting cancer: antibodies and T cells. Both antibodies and T cells have been used to treat patients with cancers. They have shown promise but have not been strong enough to cure most patients. We have found from previous research that we can put a new gene into T cells that will make them recognize cancer cells and kill them. In our last clinical trial we made a gene called a chimeric antigen receptor (CAR) from an antibody that recognizes GD2, a substance found on almost all neuroblastoma cells (GD2-CAR). We put this gene into the patients' own T cells and gave them back to 11 neuroblastoma patients. We saw that the cells did grow for a while, but started to disappear from the blood after 2 weeks. We think that if T cells are able to last longer they may have a better chance of killing GD2 positive tumor cells. Therefore, in this study we will add a new gene to the GD2 T cells that can cause the cells to live longer. T cells need substances called cytokines to survive and the cells may not get enough cytokines after infusion. We have added the gene C7R that gives the cells a constant supply of cytokine and helps them to survive for a longer period of time. In other studies using T cells, investigators found that giving chemotherapy before the T cell infusion can improve the amount of time the T cells stay in the body and therefore the effect the T cells can have. This is called lymphodepletion and we think that it will allow the T cells to expand and stay longer in the body, and potentially kill cancer cells more effectively. The GD2-C7R T cells are an investigational product not approved by the Food and Drug Administration. The purpose of this study is to find the largest safe dose of GD2-C7R T cells, and also to evaluate how long they can be detected in the blood and what affect they have on cancer.

NCT ID: NCT03600649 Active, not recruiting - Ewing Sarcoma Clinical Trials

Clinical Trial of SP-2577 (Seclidemstat) in Patients With Relapsed or Refractory Ewing or Ewing-related Sarcomas

Start date: June 4, 2018
Phase: Phase 1
Study type: Interventional

Single agent, non-randomized, open label expansion in select sarcoma patients including myxoid liposarcoma and other sarcomas that share similar chromosomal translocations to Ewing sarcoma; AND dose expansion of the combination of seclidemstat with topotecan and cyclophosphamide in patients with Ewing sarcoma

NCT ID: NCT03526250 Active, not recruiting - Clinical trials for Advanced Malignant Solid Neoplasm

Palbociclib in Treating Patients With Relapsed or Refractory Rb Positive Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Activating Alterations in Cell Cycle Genes (A Pediatric MATCH Treatment Trial)

Start date: August 13, 2018
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well palbociclib works in treating patients with Rb positive solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with activating alterations (mutations) in cell cycle genes that have spread to other places in the body and have come back or do not respond to treatment. Palbociclib may stop the growth of cancer cells by blocking some of the proteins needed for cell growth.

NCT ID: NCT03478462 Active, not recruiting - Neuroblastoma Clinical Trials

Dose Escalation Study of CLR 131 in Children, Adolescents, and Young Adults With Relapsed or Refractory Malignant Tumors Including But Not Limited to Neuroblastoma, Rhabdomyosarcoma, Ewings Sarcoma, and Osteosarcoma

CLOVER-2
Start date: April 30, 2019
Phase: Phase 1
Study type: Interventional

The study evaluates CLR 131 in children, adolescents, and young adults with relapsed or refractory malignant solid tumors and lymphoma and recurrent or refractory malignant brain tumors for which there are no standard treatment options with curative potential.

NCT ID: NCT03233204 Active, not recruiting - Malignant Glioma Clinical Trials

Olaparib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Defects in DNA Damage Repair Genes (A Pediatric MATCH Treatment Trial)

Start date: September 14, 2017
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body (advanced) and have come back (relapsed) or do not respond to treatment (refractory). Olaparib is an inhibitor of PARP, an enzyme that helps repair DNA when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy.

NCT ID: NCT03220035 Active, not recruiting - Soft Tissue Sarcoma Clinical Trials

Vemurafenib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With BRAF V600 Mutations (A Pediatric MATCH Treatment Trial)

Start date: November 8, 2017
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well vemurafenib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with BRAF V600 mutations that have spread to other places in the body (advanced) and have come back (recurrent) or do not respond to treatment (refractory). Vemurafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.