View clinical trials related to Sarcoma, Ewing.
Filter by:Hu14.18K322A is a monoclonal antibody developed at St. Jude Children's Research Hospital (SJCRH) that is made to bind to cancer cells that have a molecule called GD2 on their surface. Sometimes the human body will make an antibody to the therapeutic antibody (like hu14.18K322A) that is being given for treatment. These are called human anti-human antibodies (HAHA). When testing for HAHA in a previous cohort of patients who received hu14.18K322A, it was found that some patients tested positive for high levels of an antibody before receiving hu14.18K322A or any other anti-GD2 antibody. In this study, investigators would like to know more about the nature of this pretreatment antibody, how often is it present, and if in the laboratory it increases the killing of tumor cells. OBJECTIVES: - To determine whether pretreatment anti-therapeutic antibodies (PATA) represent antibodies reactive against an epitope (allotypic determinant) found on the anti-GD2 antibody hu14.18K322A - To determine if PATA increases the anti-tumor efficacy of anti-GD2 antibodies in vitro
This phase I/II trial studies the side effects and best dose of talazoparib and temozolomide and to see how well they work in treating younger patients with tumors that have not responded to previous treatment (refractory) or have come back (recurrent). Talazoparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving talazoparib together with temozolomide may work better in treating younger patients with refractory or recurrent malignancies.
The investigators hypothesize that this Phase 2 cellular and adoptive immunotherapy study using human leukocyte antigen (HLA)-haploidentical hematopoietic cell transplantation (HCT) followed by an early, post-transplant infusion of donor natural killer (NK) cells on Day +7 will not only be well-tolerated in this heavily-treated population (safety), but will also provide a mechanism to treat high-risk solid tumors, leading to improved disease control rate (efficacy). Disease control rate is defined as the combination of complete (CR) and partial (PR) response and stable disease (SD). The investigators further propose that this infusion of donor NK cells will influence the development of particular NK and T cell subtypes which will provide immediate/long-term tumor surveillance, infectious monitoring, and durable engraftment. Patients with high-risk solid tumors (Ewings Sarcoma, Neuroblastoma and Rhabdomyosarcoma) who have either measurable or unmeasurable disease and have met eligibility will be enrolled on this trial for a goal enrollment of 20 patients over 4 years.
The purpose of this study is to determine if Magnetic Resonance guided High Intensity Focused Ultrasound ablative therapy is safe and feasible for children, adolescents, and young adults with refractory or relapsed solid tumors.
Controlled, randomized phase III study, with the intent of optimizing the treatment of not metastatic Ewing Sarcoma. The patients will be randomized into 2 arms: standard treatment vs intensive treatment. Both arms will receive an induction treatment followed by surgery (wherever is possible) and/or radiotherapy. The maintenance treatment will be different on the basis of the response to the induction treatment (good or poor)
The purpose of this study is to define the dose-limiting toxicities and maximum tolerated dose of the poly ADP-ribose polymerase inhibitor niraparib and escalating doses of temozolomide and/or irinotecan in patients with pre-treated incurable Ewing sarcoma.
This is a Phase 1 study of the combination of two drugs: MM-398 and Cyclophosphamide. The goal is to find the highest dose of MM-398 that can be given safely when it is used together with the chemotherapy drug Cyclophosphamide.
This phase II trial studies the side effects and how well imetelstat sodium works in treating younger patients with relapsed or refractory solid tumors. Imetelstat sodium may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
The purpose of this study is to examine the toxicity of using allogeneic stem cell transplantation for treatment of subjects with relapsed or refractory Ewing Sarcoma (ES). Donors will consist of either Human Leukocyte Antigen identical (HLA)or 9/10 (A, B, C, DR, DQ [A, B, C, are Class I markers for HLA and DR and DQ are Class II markers for Matching for Transplant for Donors to match with recipient]) matched related or unrelated donors. Specifically, we will examine: - The toxicity of allogeneic stem cell transplant (SCT) in this patient population, as related to incidence of grade 3-4 acute Graft Verse Host Disease (GVHD). - The incidence of transplant related mortality at 100 days.
The purpose of this study is to find the safe dose of nab-paclitaxel in children with solid tumors, and to see if it works to treat these solid tumors in children and young adults (in Phase 1 ≤ 18 years old and in Phase 2 ≤ 24 years old). After the final dose has been chosen, patients will be enrolled according to the specific solid tumor type, (neuroblastoma, rhabdomyosarcoma, or Ewing's sarcoma), to see how nab-paclitaxel works in treating these tumors.