Clinical Trials Logo

Rhabdomyosarcoma clinical trials

View clinical trials related to Rhabdomyosarcoma.

Filter by:

NCT ID: NCT04213794 Recruiting - Clinical trials for Recurrent Ovarian Carcinoma

Heated Intra-peritoneal Chemotherapy With Doxorubicin and Cisplatin for Abdominal for Pelvic Tumors in Pediatric Patients

TOASTIT
Start date: November 8, 2019
Phase: Early Phase 1
Study type: Interventional

This early phase I trial studies how well heated intra-peritoneal chemotherapy with doxorubicin and cisplatin work for the treatment of abdominal or pelvic tumors that can be removed by surgery (resectable), does not respond to treatment (refractory), or has come back (recurrent). Heated intra-peritoneal chemotherapy is a procedure performed in combination with abdominal surgery for cancer that has spread to the abdomen. It involves the infusion of a heated chemotherapy solution that circulates into the abdominal cavity. Chemotherapy drugs, such as doxorubicin and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Heating a chemotherapy solution and infusing it directly into the abdomen may kill more cells.

NCT ID: NCT03868852 Recruiting - Clinical trials for Childhood Rhabdomyosarcoma

Efficacy and Safety of Radiotherapy Combined With Apatinib Mesylate in the Treatment of Rhabdomyosarcoma in Children

Start date: January 1, 2019
Phase: Phase 1/Phase 2
Study type: Interventional

The purpose of this study is to evaluate the efficacy and safety of radiotherapy combined with apatinib mesylate in the treatment of rhabdomyosarcoma in children.

NCT ID: NCT03618381 Recruiting - Neuroblastoma Clinical Trials

EGFR806 CAR T Cell Immunotherapy for Recurrent/Refractory Solid Tumors in Children and Young Adults

Start date: June 18, 2019
Phase: Phase 1
Study type: Interventional

This is a phase I, open-label, non-randomized study that will enroll pediatric and young adult research participants with relapsed or refractory non-CNS solid tumors to evaluate the safety, feasibility, and efficacy of administering T cell products derived from the research participant's blood that have been genetically modified to express a EGFR-specific receptor (chimeric antigen receptor, or CAR) that will target and kill solid tumors that express EGFR and the selection-suicide marker EGFRt. EGFRt is a protein incorporated into the cell with our EGFR receptor which is used to identify the modified T cells and can be used as a tag that allows for elimination of the modified T cells if needed. On Arm A of the study, research participants will receive EGFR-specific CAR T cells only. On Arm B of the study, research participants will receive CAR T cells directed at EGFR and CD19, a marker on the surface of B lymphocytes, following the hypothesis that CD19+ B cells serving in their normal role as antigen presenting cells to T cells will promote the expansion and persistence of the CAR T cells. The CD19 receptor harbors a different selection-suicide marker, HERtG. The primary objectives of the study will be to determine the feasibility of manufacturing the cell products, the safety of the T cell product infusion, to determine the maximum tolerated dose of the CAR T cells products, to describe the full toxicity profile of each product, and determine the persistence of the modified cell in the subject's body on each arm. Subjects will receive a single dose of T cells comprised of two different subtypes of T cells (CD4 and CD8 T cells) felt to benefit one another once administered to the research participants for improved potential therapeutic effect. The secondary objectives of this protocol are to study the number of modified cells in the patients and the duration they continue to be at detectable levels. The investigators will also quantitate anti-tumor efficacy on each arm. Subjects who experience significant and potentially life-threatening toxicities (other than clinically manageable toxicities related to T cells working, called cytokine release syndrome) will receive infusions of cetuximab (an antibody commercially available that targets EGFRt) or trastuzumab (an antibody commercially available that targets HER2tG) to assess the ability of the EGFRt on the T cells to be an effective suicide mechanism for the elimination of the transferred T cell products.

NCT ID: NCT03496402 Recruiting - Leukemia Clinical Trials

Biological Characterisation of High Risk CHildhood Cancer in Children, Adolescents and Young Adults (MICCHADO)

MICCHADO
Start date: April 20, 2018
Phase: N/A
Study type: Interventional

Methodology: Prospective, multicentric, open, non-randomised, non-therapeutic, interventional study

NCT ID: NCT03382158 Recruiting - Neuroblastoma Clinical Trials

International PPB/DICER1 Registry

Start date: December 6, 2016
Phase:
Study type: Observational

Pleuropulmonary blastoma (PPB) is a rare malignant neoplasm of the lung presenting in early childhood. Type I PPB is a purely cystic lesion, Type II is a partially cystic, partially solid tumor, Type III is a completely solid tumor. Treatment of children with PPB is at the discretion of the treating institution. This study builds off of the 2009 study and will also seek to enroll individuals with DICER1-associated conditions, some of whom may present only with the DICER1 gene mutation, which will help the Registry understand how these tumors and conditions develop, their clinical course and the most effective treatments.

NCT ID: NCT03213652 Recruiting - Clinical trials for Malignant Solid Neoplasm

Ensartinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With ALK or ROS1 Genomic Alterations (A Pediatric MATCH Treatment Trial)

Start date: April 17, 2018
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or does not respond to treatment (refractory) and may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03155620 Recruiting - Malignant Glioma Clinical Trials

Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders (The Pediatric MATCH Screening Trial)

Start date: July 31, 2017
Phase: Phase 2
Study type: Interventional

This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.

NCT ID: NCT03050268 Recruiting - Pancreatic Cancer Clinical Trials

Familial Investigations of Childhood Cancer Predisposition

SJFAMILY
Start date: April 6, 2017
Phase:
Study type: Observational

NOTE: This is a research study and is not meant to be a substitute for clinical genetic testing. Families may never receive results from the study or may receive results many years from the time they enroll. If you are interested in clinical testing please consider seeing a local genetic counselor or other genetics professional. If you have already had clinical genetic testing and meet eligibility criteria for this study as shown in the Eligibility Section, you may enroll regardless of the results of your clinical genetic testing. While it is well recognized that hereditary factors contribute to the development of a subset of human cancers, the cause for many cancers remains unknown. The application of next generation sequencing (NGS) technologies has expanded knowledge in the field of hereditary cancer predisposition. Currently, more than 100 cancer predisposing genes have been identified, and it is now estimated that approximately 10% of all cancer patients have an underlying genetic predisposition. The purpose of this protocol is to identify novel cancer predisposing genes and/or genetic variants. For this study, the investigators will establish a Data Registry linked to a Repository of biological samples. Health information, blood samples and occasionally leftover tumor samples will be collected from individuals with familial cancer. The investigators will use NGS approaches to find changes in genes that may be important in the development of familial cancer. The information gained from this study may provide new and better ways to diagnose and care for people with hereditary cancer. PRIMARY OBJECTIVE: - Establish a registry of families with clustering of cancer in which clinical data are linked to a repository of cryopreserved blood cells, germline DNA, and tumor tissues from the proband and other family members. SECONDARY OBJECTIVE: - Identify novel cancer predisposing genes and/or genetic variants in families with clustering of cancer for which the underlying genetic basis is unknown.

NCT ID: NCT02508038 Recruiting - Clinical trials for Acute Myeloid Leukemia

Alpha/Beta CD19+ Depleted Haploidentical Transplantation + Zometa for Pediatric Hematologic Malignancies and Solid Tumors

Start date: February 12, 2016
Phase: Phase 1
Study type: Interventional

This phase I trial studies the safety of transplantation with a haploidentical donor peripheral blood stem cell graft depleted of TCRαβ+ cells and CD19+ cells in conjunction with the immunomodulating drug, Zoledronate, given in the post-transplant period to treat pediatric patients with relapsed or refractory hematologic malignancies or high risk solid tumors.

NCT ID: NCT02409576 Recruiting - Rhabdomyosarcoma Clinical Trials

Pilot Study of Expanded , Activated Haploidentical Natural Killer Cell Infusions for Sarcomas

NKEXPSARC
Start date: February 2015
Phase: Phase 1/Phase 2
Study type: Interventional

Progress in the treatment of children with leukemia and lymphoma results in high cure rates but progress in the treatment of children and adolescents with solid tumors has been slow. Despite aggressive therapy with multimodality treatment involving surgery, radiation and chemotherapy, about two thirds of the patients with metastatic Ewing sarcoma (EWS), and intermediate and high risk rhabdomyosarcoma (RMS) will relapse. The available second line therapies for relapse are limited and often not effective. There is a dire need to look for treatment options beyond conventional means for the treatment of these patients. Infusions of allogeneic natural killer (NK) cells in leukemia patients have shown to be tolerated well without inducing graft versus host disease (GVHD). There is also mounting evidence that NK cells have activity against solid tumors. In the lab the investigators tested NK cell activity against cell lines from different paediatric solid tumors. Among paediatric solid tumors, EWS and RMS are exquisitely sensitive to killing by expanded NK cells; NK cells also have activity against OS cells. Preliminary clinical data suggest that donor NK cells may exert antitumor activity in children with solid tumors undergoing allogeneic hematopoietic stem cell transplantation. Taking into account the safety of adaptive NK cell infusion, and their efficacy against EWS, RMS and OS, NK cells could be a powerful new tool in the treatment of paediatric solid tumors. The great anti-tumor activity of expanded and activated NK cells, together with the feasibility of infusing haploidentical NK cells in a non-transplant setting form a compelling rationale for the clinical testing of these NK cells in patients with sarcoma.