Clinical Trials Logo

Rhabdomyosarcoma clinical trials

View clinical trials related to Rhabdomyosarcoma.

Filter by:
  • Active, not recruiting  
  • Page 1 ·  Next »

NCT ID: NCT05302921 Active, not recruiting - Clinical trials for Hepatocellular Carcinoma

Neoadjuvant Dual Checkpoint Inhibition and Cryoablation in Relapsed/Refractory Pediatric Solid Tumors

Start date: February 18, 2022
Phase: Phase 2
Study type: Interventional

The is a phase II, single arm, open-label, multi-site trial studying the combination of cryoablation therapy and dual checkpoint inhibition with nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4) given at the recommended phase 2 dose (RP2D) in pediatric and young adult patients with relapsed or refractory solid tumors.

NCT ID: NCT05071209 Active, not recruiting - Clinical trials for Refractory Malignant Solid Neoplasm

Elimusertib for the Treatment of Relapsed or Refractory Solid Tumors

Start date: December 22, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial tests the safety, best dose, and whether elimusertib works in treating patients with solid tumors that have come back (relapsed) or does not respond to treatment (refractory). Elimusertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT04483778 Active, not recruiting - Melanoma Clinical Trials

B7H3 CAR T Cell Immunotherapy for Recurrent/Refractory Solid Tumors in Children and Young Adults

Start date: July 13, 2020
Phase: Phase 1
Study type: Interventional

This is a phase I, open-label, non-randomized study that will enroll pediatric and young adult research participants with relapsed or refractory non-CNS solid tumors to evaluate the safety, feasibility, and efficacy of administering T cell products derived from the research participant's blood that have been genetically modified to express a B7H3-specific receptor (chimeric antigen receptor, or CAR) that will target and kill solid tumors that express B7H3. On Arm A of the study, research participants will receive B7H3-specific CAR T cells only. On Arm B of the study, research participants will receive CAR T cells directed at B7H3 and CD19, a marker on the surface of B lymphocytes, following the hypothesis that CD19+ B cells serving in their normal role as antigen presenting cells to T cells will promote the expansion and persistence of the CAR T cells. Arm A CAR T cells include the protein EGFRt and Arm B CAR T cells include the protein HER2tG. These proteins can be used to both track and destroy the CAR T cells in case of undue toxicity. The primary objectives of the study will be to determine the feasibility of manufacturing the cell products, the safety of the T cell product infusion, to determine the maximum tolerated dose of the CAR T cells products, to describe the full toxicity profile of each product, and determine the persistence of the modified cell in the participant's body on each arm. Participants will receive a single dose of T cells comprised of two different subtypes of T cells (CD4 and CD8 T cells) felt to benefit one another once administered to the research participants for improved potential therapeutic effect. The secondary objectives of this protocol are to study the number of modified cells in the patients and the duration they continue to be at detectable levels. The investigators will also quantitate anti-tumor efficacy on each arm. Participants who experience significant and potentially life-threatening toxicities (other than clinically manageable toxicities related to T cells working, called cytokine release syndrome) will receive infusions of cetuximab (an antibody commercially available that targets EGFRt) or trastuzumab (an antibody commercially available that targets HER2tG) to assess the ability of the EGFRt on the T cells to be an effective suicide mechanism for the elimination of the transferred T cell products.

NCT ID: NCT04420975 Active, not recruiting - Leiomyosarcoma Clinical Trials

Nivolumab and BO-112 Before Surgery for the Treatment of Resectable Soft Tissue Sarcoma

Start date: October 29, 2020
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects of BO-112 when given together with nivolumab before surgery in treating patients with soft tissue sarcoma that can be removed by surgery (resectable). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Immunotherapy with BO-112, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Giving nivolumab and BO-112 before surgery may work better in treating patients with soft tissue sarcoma compared to nivolumab alone.

NCT ID: NCT04320888 Active, not recruiting - Clinical trials for Refractory Malignant Solid Neoplasm

Selpercatinib for the Treatment of Advanced Solid Tumors, Lymphomas, or Histiocytic Disorders With Activating RET Gene Alterations, a Pediatric MATCH Treatment Trial

Start date: May 3, 2021
Phase: Phase 2
Study type: Interventional

This phase II pediatric MATCH treatment trial studies how well selpercatinib works in treating patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), lymphomas, or histiocytic disorders that have activating RET gene alterations. Selpercatinib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway (called the RET pathway) and may reduce tumor size.

NCT ID: NCT04284774 Active, not recruiting - Clinical trials for Malignant Solid Neoplasm

Tipifarnib for the Treatment of Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With HRAS Gene Alterations, a Pediatric MATCH Treatment Trial

Start date: October 13, 2020
Phase: Phase 2
Study type: Interventional

This phase II pediatric MATCH trial studies how well tipifarnib works in treating patients with solid tumors that have recurred or spread to other places in the body (advanced), lymphoma, or histiocytic disorders, that have a genetic alteration in the gene HRAS. Tipifarnib may block the growth of cancer cells that have specific genetic changes in a gene called HRAS and may reduce tumor size.

NCT ID: NCT04195555 Active, not recruiting - Clinical trials for Refractory Malignant Solid Neoplasm

Ivosidenib in Treating Patients With Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With IDH1 Mutations (A Pediatric MATCH Treatment Trial)

Start date: July 20, 2020
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well ivosidenib works in treating patients with solid tumors that have spread to other places in the body (advanced), lymphoma, or histiocytic disorders that have IDH1 genetic alterations (mutations). Ivosidenib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway called the IDH pathway.

NCT ID: NCT04095221 Active, not recruiting - Rhabdomyosarcoma Clinical Trials

A Study of the Drugs Prexasertib, Irinotecan, and Temozolomide in People With Desmoplastic Small Round Cell Tumor and Rhabdomyosarcoma

Start date: September 17, 2019
Phase: Phase 1/Phase 2
Study type: Interventional

The purpose of this study is to test whether the study drug prexasertib is a safe and effective treatment for people with DSRCT or RMS when given in combination with the standard drugs irinotecan and temozolomide. The study will test different doses of prexasertib in combination with irinotecan and temozolomide to find the highest dose of prexasertib that causes few or mild side effects in participants.

NCT ID: NCT03989596 Active, not recruiting - Sarcoma Clinical Trials

Hypofractionated Radiotherapy With Hyperthermia in Unresectable or Marginally Resectable Soft Tissue Sarcomas

SINDIR
Start date: June 1, 2018
Phase: Phase 2
Study type: Interventional

After a screening, which consists of biopsy, physical examination, initial diffusion-weighted magnetic resonance imaging (DWI-MRI) or body computed tomography (CT) scan, blood tests and case analysis on Multidisciplinary Team (MDT) meeting, a patient will receive the hypofractionated radiotherapy 10x 3.25 Gy with regional hyperthermia (twice a week) within two weeks. The response analysis in CT or DWI-MRI and toxicity assessment will be performed after at least 6 weeks. At the second MDT meeting, a final decision about resectability of the tumor will be made. In case of resectability or consent for amputation, if required, a patient will be referred to surgery. In case of unresectability or amputation refusal, the patient will receive the second part of the treatment which consists of 4x 4 Gy with hyperthermia (twice a week).

NCT ID: NCT03709680 Active, not recruiting - Solid Tumors Clinical Trials

Study Of Palbociclib Combined With Chemotherapy In Pediatric Patients With Recurrent/Refractory Solid Tumors

Start date: May 24, 2019
Phase: Phase 1/Phase 2
Study type: Interventional

A study to learn about safety and find out maximum tolerable dose of palbociclib given in combination with chemotherapy (temozolomide with irinotecan or topotecan with cyclophosphamide) in children, adolescents and young adults with recurrent or refractory solid tumors (phase 1). Neuroblastoma tumor specific cohort to further evaluate antitumor activity of palbociclib in combination with topotecan and cyclophosphamide in children, adolescents, and young adults with recurrent or refractory neuroblastoma. Phase 2 to learn about the efficacy of palbociclib in combination with irinotecan and temozolomide when compared with irinotecan and temozolomide alone in the treatment of children, adolescents, and young adults with recurrent or refractory Ewing sarcoma (EWS).