Clinical Trials Logo

Rhabdomyosarcoma clinical trials

View clinical trials related to Rhabdomyosarcoma.

Filter by:

NCT ID: NCT05304585 Recruiting - Clinical trials for Embryonal Rhabdomyosarcoma

Chemotherapy for the Treatment of Patients With Newly Diagnosed Very Low-Risk and Low Risk Fusion Negative Rhabdomyosarcoma

Start date: August 4, 2022
Phase: Phase 3
Study type: Interventional

Rhabdomyosarcoma is a type of cancer that occurs in the soft tissues in the body. This phase III trial aims to maintain excellent outcomes in patients with very low risk rhabdomyosarcoma (VLR-RMS) while decreasing the burden of therapy using treatment with 24 weeks of vincristine and dactinomycin (VA) and examines the use of centralized molecular risk stratification in the treatment of rhabdomyosarcoma. Another aim of the study it to find out how well patients with low risk rhabdomyosarcoma (LR-RMS) respond to standard chemotherapy when patients with VLR-RMS and patients who have rhabdomyosarcoma with DNA mutations get separate treatment. Finally, this study examines the effect of therapy intensification in patients who have RMS cancer with DNA mutations to see if their outcomes can be improved.

NCT ID: NCT05302921 Active, not recruiting - Clinical trials for Hepatocellular Carcinoma

Neoadjuvant Dual Checkpoint Inhibition and Cryoablation in Relapsed/Refractory Pediatric Solid Tumors

Start date: February 18, 2022
Phase: Phase 2
Study type: Interventional

The is a phase II, single arm, open-label, multi-site trial studying the combination of cryoablation therapy and dual checkpoint inhibition with nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4) given at the recommended phase 2 dose (RP2D) in pediatric and young adult patients with relapsed or refractory solid tumors.

NCT ID: NCT05116800 Withdrawn - Soft Tissue Sarcoma Clinical Trials

Phase 2 Study of 9-ING-41 With Chemotherapy in Sarcoma

Start date: March 1, 2022
Phase: Phase 2
Study type: Interventional

This is an open label, two-stratum, phase 2 clinical trial evaluating the efficacy of 9-ING-41 in combination with gemcitabine/docetaxel in patients ≥10 years of age with advanced sarcoma. 9-ING-41 in combination with gemcitabine and docetaxel will lead to sustained disease control and/or increase the rates of objective response in patients with unresectable or metastatic soft tissue and bone sarcomas.

NCT ID: NCT05103631 Recruiting - Solid Tumor Clinical Trials

Interleukin-15 Armored Glypican 3-specific Chimeric Antigen Receptor Expressed in Autologous T Cells for Solid Tumors

Start date: June 17, 2021
Phase: Phase 1
Study type: Interventional

Patients may be considered if the cancer has come back, has not gone away after standard treatment or the patient cannot receive standard treatment. This research study uses special immune system cells called CATCH T cells, a new experimental treatment. The body has different ways of fighting infection and disease. No single way seems perfect for fighting cancers. This research study combines two different ways of fighting cancer: antibodies and T cells. Antibodies are types of proteins that protect the body from infectious diseases and possibly cancer. T cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells, including cells infected with viruses and tumor cells. Both antibodies and T cells have been used to treat patients with cancers. They have shown promise, but have not been strong enough to cure most patients. Investigators have found from previous research that we can put a new gene (a tiny part of what makes-up DNA and carriesa person's traits) into T cells that will make them recognize cancer cells and kill them . In the lab, we made several genes called a chimeric antigen receptor (CAR), from an antibody called GC33. The antibody GC33 recognizes a protein called GPC3 that is found on the hepatocellular carcinoma the patient has. The specific CAR we are making is called GPC3-CAR. To make this CAR more effective, we also added a gene encoding protein called IL15. This protein helps CAR T cells grow better and stay in the blood longer so that they may kill tumors better. The mixture of GPC3-CAR and IL15 killed tumor cells better in the laboratory when compared with CAR T cells that did not have IL 15. This study will test T cells that we have made with CATCH T cells in patients with GPC3-positive solid tumors such as the ones participating in this study. T cells made to carry a gene called iCasp9 can be killed when they encounter a specific drug called AP1903. The investigators will insert the iCasp9 and IL15 together into the T cells using a virus that has been made for this study. The drug (AP1903) is an experimental drug that has been tested in humans with no bad side-effects. The investigators will use this drug to kill the T cells if necessary due to side effects. This study will test T cells genetically engineered with a GPC3-CAR and IL15 (CATCH T cells) in patients with GPC3-positive solid tumors. The CATCH T cells are an investigational product not approved by the Food and Drug Administration. The purpose of this study is to find the biggest dose of CATCH T cells that is safe , to see how long they last in the body, to learn what the side effects are and to see if the CATCH T cells will help people with GPC3-positive solid tumors.

NCT ID: NCT05093322 Completed - Lymphoma Clinical Trials

A Study of Surufatinib in Combination With Gemcitabine in Pediatric, Adolescent, and Young Adult Patients With Recurrent or Refractory Solid Tumors

Start date: November 30, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

The purpose of this study is to evaluate the safety and tolerability of surufatinib, thereby identifying the Maximum Tolerated Dose (MTD) and/or Recommended Phase 2 Dose (RP2D) of surufatinib administered in combination with gemcitabine in pediatric patients with recurrent or refractory solid tumors or lymphoma. The study will be conducted in 2 parts.

NCT ID: NCT05071209 Active, not recruiting - Clinical trials for Refractory Malignant Solid Neoplasm

Elimusertib for the Treatment of Relapsed or Refractory Solid Tumors

Start date: December 22, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial tests the safety, best dose, and whether elimusertib works in treating patients with solid tumors that have come back (relapsed) or does not respond to treatment (refractory). Elimusertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT05033288 Recruiting - Chondrosarcoma Clinical Trials

Comparing Carbon Ion Therapy, Surgery, and Proton Therapy for Management of Pelvic Sarcomas Involving the Bone

Start date: January 20, 2022
Phase:
Study type: Observational

This study compares carbon ion therapy, surgery, and proton therapy to determine if one has better disease control and fewer side effects. There are three types of radiation treatment used for pelvic bone sarcomas: surgery with or without photon/proton therapy, proton therapy alone, and carbon ion therapy alone. The purpose of this study is to compare quality of life among patients treated for pelvic bone sarcomas across the world, and to determine if carbon ion therapy improves quality of life compared to surgery and disease control compared with proton therapy.

NCT ID: NCT04995003 Recruiting - Sarcoma Clinical Trials

HER2 Chimeric Antigen Receptor (CAR) T Cells in Combination With Checkpoint Blockade in Patients With Advanced Sarcoma

Start date: December 7, 2021
Phase: Phase 1
Study type: Interventional

The purpose of this study is to learn whether it is safe to give HER2-CAR T cells in combination with an immune checkpoint inhibitor drug (pembrolizumab or nivolumab), to learn what the side effects are, and to see whether this therapy might help patients with sarcoma. Another goal of this study is to study the bacteria found in the stool of patients with sarcoma who are being treated with HER2 CAR T cells and immune checkpoint inhibitor drugs to see if the types of bacteria influence how well the treatment works. The investigators have found from previous research that they can put a new gene into T cells that will make them recognize cancer cells and kill them. They now want to see if they can put a new gene in these cells that will let the T cells recognize and kill sarcoma cells. The new gene that the investigators will put in makes an antibody specific for HER2 (Human Epidermal Growth Factor Receptor 2) that binds to sarcoma cells. In addition, it contains CD28, which stimulated T cells and make them last longer. After this new gene is put into the T cell, the T cell becomes known as a chimeric antigen receptor T cell or CAR T cell. In another clinical study using these CAR T cells targeting HER2 as well as other studies using CAR T cells, investigators found that giving chemotherapy before the T cell infusion can improve the effect the T cells can have. Giving chemotherapy before a T cell infusion is called lymphodepletion since the chemotherapy is specifically chosen to decrease the number of lymphocytes in the body. Decreasing the number of the patient's lymphocytes first should allow the infused T cells to expand in the body, and potentially kill cancer cells more effectively. The chemotherapy used for lymphodepletion is a combination of cyclophosphamide and fludarabine. After the patient receives the lymphodepletion chemotherapy and CAR T cells during treatment on the study, they will receive an antibody drug called an immune checkpoint inhibitor, pembrolizumab or nivolumab. Immune checkpoint inhibitors are drugs that remove the brakes on the immune system to allow it to act against cancer.

NCT ID: NCT04994132 Recruiting - Clinical trials for Embryonal Rhabdomyosarcoma

A Study to Compare Early Use of Vinorelbine and Maintenance Therapy for Patients With High Risk Rhabdomyosarcoma

Start date: September 14, 2021
Phase: Phase 3
Study type: Interventional

This phase III trial compares the safety and effect of adding vinorelbine to vincristine, dactinomycin, and cyclophosphamide (VAC) for the treatment of patients with high risk rhabdomyosarcoma (RMS). High risk refers to cancer that is likely to recur (come back) after treatment or spread to other parts of the body. This study will also examine if adding maintenance therapy after VAC therapy, with or without vinorelbine, will help get rid of the cancer and/or lower the chance that the cancer comes back. Vinorelbine and vincristine are in a class of medications called vinca alkaloids. They work by stopping cancer cells from growing and dividing and may kill them. Dactinomycin is a type of antibiotic that is only used in cancer chemotherapy. It works by damaging the cell's deoxyribonucleic acid (DNA) and may kill cancer cells. Cyclophosphamide is in a class of medications called alkylating agents. It works by damaging the cell's DNA and may kill cancer cells. It may also lower the body's immune response. Vinorelbine, vincristine, dactinomycin and cyclophosphamide are chemotherapy medications that work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial may have the potential to eliminate rhabdomyosarcoma for a long time or for the rest of patient's life.

NCT ID: NCT04956198 Completed - Osteosarcoma Clinical Trials

Drug Sensitivity and Mutation Profiling

Start date: November 17, 2020
Phase:
Study type: Observational

This study is a prospective, non-randomized observational study. Freshly isolated tumor cells will be tested for chemosensitivity to the standard of care drugs as single agents and in combinations using state-of-the-art viability assay designed for ex-vivo high-throughput drug sensitivity testing (DST). In addition, the genetic profile of the tumor will be obtained from the medical records and correlated with drug response.