View clinical trials related to Rhabdomyosarcoma.
Filter by:This laboratory study is collecting and storing tissue, blood, and bone marrow samples from young patients with cancer. Collecting and storing samples of tissue, blood, and bone marrow from patients with cancer to study in the laboratory may help doctors learn more about changes that may occur in DNA and identify biomarkers related to cancer.
This laboratory study is collecting tumor tissue and blood samples from patients with gynecologic tumors. Collecting and storing samples of tumor tissue and blood from patients with cancer to study in the laboratory may help in the study of cancer.
The purpose of this study is to investigate whether the addition of oral maintenance chemotherapy with O-TIE (Etoposide, Idarubicin, Trofosfamide) for 6 months improves the event free survival (EFS) in patients with localised high-risk RMS and RMS-like Soft Tissue Sarcoma.
The purpose of this study is to test the usefulness of imaging with radiolabeled methionine in the evaluation of children and young adults with tumor(s). Methionine is a naturally occurring essential amino acid. It is crucial for the formation of proteins. When labeled with carbon-11 (C-11), a radioactive isotope of the naturally occurring carbon-12, the distribution of methionine can be determined noninvasively using a PET (positron emission tomography) camera. C-11 methionine (MET) has been shown valuable in the monitoring of a large number of neoplasms. Since C-11 has a short half life (20 minutes), MET must be produced in a facility very close to its intended use. Thus, it is not widely available and is produced only at select institutions with access to a cyclotron and PET chemistry facility. With the new availability of short lived tracers produced by its PET chemistry unit, St. Jude Children's Research Hospital (St. Jude) is one of only a few facilities with the capabilities and interests to evaluate the utility of PET scanning in the detection of tumors, evaluation of response to therapy, and distinction of residual tumor from scar tissue in patients who have completed therapy. The investigators propose to examine the biodistribution of MET in patients with malignant solid neoplasms, with emphasis on central nervous system (CNS) tumors and sarcomas. This project introduces a new diagnostic test for the noninvasive evaluation of neoplasms in pediatric oncology. Although not the primary purpose of this proposal, the investigators anticipate that MET studies will provide useful clinical information for the management of patients with malignant neoplasms.
This phase II trial is studying the side effects and how well cixutumumab works in treating patients with relapsed or refractory solid tumors. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them.
This phase I trial is studying the side effects and best dose of cixutumumab given together with doxorubicin hydrochloride and to see how well they work in treating patients with unresectable, locally advanced, or metastatic soft tissue sarcoma. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Drugs used in chemotherapy, such as doxorubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving monoclonal antibody cixutumumab together with doxorubicin hydrochloride may kill more tumor cells.
This laboratory study is evaluating how well dactinomycin and vincristine work in treating young patients with cancer. Studying samples of blood and urine in the laboratory from patients with cancer may help doctors learn how dactinomycin and vincristine affect the body and how patients will respond to treatment.
This multicenter study will enroll approximately 185 participants with metastatic or advanced sarcoma, to assess the effectiveness and safety of IMC-A12 monotherapy for this indication. Participants will be stratified into five tiers according to diagnosis: 1. Ewing's sarcoma/peripheral neuroectodermal tumor (PNET) 2. rhabdomyosarcoma 3. leiomyosarcoma 4. adipocytic sarcoma 5. synovial sarcoma. A total of 85 participants will be enrolled initially, 17 in each tier. Participants will receive single agent IMC-A12 every 2 weeks. A treatment cycle will be defined as 6 weeks, with radiological evaluation at every cycle. Safety and response in the initial 17 participants in each tier will be used to determine whether to extend enrollment to the target total of 37 participants per tier.
This phase II trial is studying how well AZD0530 works in treating patients with recurrent locally advanced, or metastatic soft tissue sarcoma. AZD0530 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
RATIONALE: Giving high-dose chemotherapy before an autologous stem cell transplant stops the growth of tumor cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as G-CSF, helps stem cells move from the bone marrow to the blood so they can be collected and stored. Chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. PURPOSE: This clinical trial is studying how well giving busulfan, melphalan, and topotecan hydrochloride together with a stem cell transplant works in treating patients with newly diagnosed or relapsed solid tumor.