View clinical trials related to Rhabdoid Tumor.
Filter by:The participants of this study will have advanced malignancies (also known as advanced cancer). The main aim of this trial will be to study the blood levels (known as pharmacokinetics) of the tazemtostat (the study drug) when administered in combination with another drug. Part 1 of the study will evaluate the interaction between the drugs tazemetostat and itraconazole. Part 2 of the study will evaluate the interaction between the drugs tazemetostat and rifampin For both Parts 1 and 2, safety and the level that effects of the study drug can be tolerated (known as tolerability) will be assessed throughout.
Approximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: - To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. - To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: - To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.
This phase I trial studies the side effects and best dose of ribociclib and everolimus and to see how well they work in treating patients with malignant brain tumors that have come back or do not respond to treatment. Ribociclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as everolimus, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ribociclib and everolimus may work better at treating malignant brain tumors.
The purpose of the study is to confirm the safety of the selected dose and potential toxicity of oncolytic poliovirus (PV) immunotherapy with PVSRIPO for pediatric patients with recurrent WHO grade III or IV malignant glioma, but evidence for efficacy will also be sought. The primary objective is to confirm the safety of the selected dose of PVSRIPO when delivered intracerebrally by convection-enhanced delivery (CED) in children with recurrent WHO Grade III malignant glioma (anaplastic astrocytoma, anaplastic oligoastrocytoma, anaplastic oligodendroglioma, anaplastic pleomorphic xanthoastrocytoma) or WHO Grade IV malignant glioma (glioblastoma, gliosarcoma). A secondary objective is to estimate overall survival (OS) in this population.
This is a three arm Phase I study within the Pacific Pediatric Neuro-Oncology Consortium (PNOC). This study will look to determine the safety and recommended phase 2 dose of the modified measles virus (MV-NIS) in children and young adults with recurrent medulloblastoma or atypical teratoid rhabdoid tumor (ATRT).
This is a Phase I clinical trial evaluating abemaciclib (LY2835219), an inhibitor of cyclin dependent-kinases 4 and 6 (Cdk 4/6) in children and young adults with newly diagnosed diffuse intrinsic pontine glioma (DIPG) (Stratum A) and in relapsed/refractory/progressive malignant brain (Grade III/IV, including DIPG; MBT) and solid tumor (ST) patients (Stratum B).
This study will include participants with various types of cancer known as soft-tissue sarcomas. Tissues that can be affected by soft tissue sarcomas include fat, muscle, blood vessels, deep skin tissues, tendons and ligaments. Soft tissue cancers are rare and can occur almost anywhere in the body. Part 1 of this trial will study the safety and the level that adverse effects of the study drug tazemetostat in combination with doxorubicin (current front line treatment) can be tolerated (known as tolerability). It is also designed to establish a recommended study drug dosage for the next part of the study. Part 2 will evaluate and compare how long participants live without their disease getting worse when receiving the study drug plus doxorubicin versus doxorubicin plus placebo (dummy treatment).
This is a Phase I, open-label, dose escalation and dose expansion study with BID (suspension) and TID (tablet) oral dose of tazemetostat. Subjects will be screened for eligibility within 14 days of the planned first dose of tazemetostat. A treatment cycle will be 28 days. Response assessment will be evaluated after 8 weeks of treatment and subsequently every 8 weeks while on study. The study has two parts: Dose Escalation and Dose Expansion. Dose escalation for subjects with the following relapsed/refractory malignancies: - Rhabdoid tumors: - Atypical teratoid rhabdoid tumor (ATRT) - Malignant rhabdoid tumor (MRT) - Rhabdoid tumor of kidney (RTK) - Selected tumors with rhabdoid features - INI1-negative tumors: - Epithelioid sarcoma - Epithelioid malignant peripheral nerve sheath tumor - Extraskeletal myxoid chondrosarcoma - Myoepithelial carcinoma - Renal medullary carcinoma - Other INI1-negative malignant tumors (e.g., dedifferentiated chordoma) (with Sponsor approval) - Synovial Sarcoma with a SS18-SSX rearrangement Dose Escalation cohorts are closed to enrollment. Dose Expansion at the MTD or the RP2D - Cohort 1 - ATRT (closed to enrollment) - Cohort 2 - MRT/RTK/selected tumors with rhabdoid features (closed to enrollment) - Cohort 3 - INI-negative tumors: - Epithelioid sarcoma - Epithelioid malignant peripheral nerve sheath tumor - Extraskeletal myxoid chondrosarcoma - Myoepithelial carcinoma - Renal medullary carcinoma - Chordoma (poorly differentiated or de-differentiated) - Other INI1-negative malignant tumors (e.g., dedifferentiated chordoma) with Sponsor approval - Cohort 4 - Tumor types eligible for Cohorts 1 through 3 or synovial sarcoma with SS18-SSX rearrangement (closed to enrollment)
This phase I trial studies the side effects and the best dose of wild-type reovirus (viral therapy) when given with sargramostim in treating younger patients with high grade brain tumors that have come back or that have not responded to standard therapy. A virus, called wild-type reovirus, which has been changed in a certain way, may be able to kill tumor cells without damaging normal cells. Sargramostim may increase the production of blood cells and may promote the tumor cell killing effects of wild-type reovirus. Giving wild-type reovirus together with sargramostim may kill more tumor cells.
This is a Phase I trial with new experimental drugs such as simvastatin in combination with topotecan and cyclophosphamide in the hopes of finding a drug that may work against tumors that have come back or that have not responded to standard therapy. This study will define toxicity of high dose simvastatin in combination with topotecan and cyclophosphamide and evaluate for cholesterol levels and IL6/STAT3 pathway changes as biomarkers of patient response.