Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT00299312
Other study ID # RDCRN 5201
Secondary ID U54HD061222ARP 5
Status Completed
Phase N/A
First received March 3, 2006
Last updated March 14, 2017
Start date March 2006
Est. completion date October 2015

Study information

Verified date March 2017
Source University of Alabama at Birmingham
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Rett Syndrome (RTT) is a genetic brain disorder that occurs almost exclusively in females and is usually caused by a change (mutation) in the gene MECP2. The disorder is characterized by multiple developmental problems, as well as behavioral features, such as repetitive stereotypic hand movements, including hand washing, wringing, and tapping. While there is no cure for RTT, recent advances in the understanding of the disease suggest that the development of new, effective therapies is promising. This study will gather information on the genetic defects that cause RTT, the physical expressions of these defects, and disease progression. In turn, this may direct the development of future treatments. Expanded studies include individuals with MECP2 Duplication disorder, and RTT-related disorders including individuals with MECP2 mutations, but not meeting obligatory criteria for the diagnosis of RTT and individuals with mutations in CDKL5 and FOXG1 some of whom meet criteria for atypical RTT.


Description:

RTT is a brain disorder that causes problems with childhood development. It is usually caused by an abnormality (mutation) in the gene MECP2. RTT can cause severe impairments in movement and communication skills, including speech and social interaction. The first signs of RTT include loss of acquired speech and loss of purposeful hand use for activities such as eating or playing. Individuals may also develop abnormal walking, repetitive hand movements, such as clapping or wringing, and abnormal breathing while awake.

Effective treatments for RTT are currently lacking. There is also inadequate information about the link between RTT clinical features and its genetic basis. In order to prepare for future clinical trials that may lead to effective therapies, it is important to collect accurate information about the characteristics of RTT and the pattern of disease progression. This study will gather historical and physical examination data to establish phenotype-genotype correlations. Data on survival and quality of life in females with RTT and males with MECP2 gene mutations will also be evaluated.

MECP2 Duplication disorder affects principally males who have one and rarely more than one additional copy of MECP2 as well as a variable number of other duplicated genes. These males have absent spoken language, shuffling gait, epilepsy, and, in some, frequent upper respiratory infections or sinusitis. Mother of these males are generally normal due to favorable skewing of X-chromosome inactivation, but in some instances may have neurodevelop-mental delays. Effective treatments are lacking. It is critical to develop phenotype-genotype correlations and longitudinal natural history data to assist the conduct of clinical trials.

RTT-related disorders feature a variety of involvements either due to MECP2, CDKL5, and FOXG1 as well as other potential causes of atypical RTT. Phenotype-genotype studies and longitudinal natural history data are essential to the conduct of future clinical trials.

Participants in this observational study will be recruited from the four sites at which the study is being conducted, as well as through the Rare Disease Clinical Research Network and the International Rett Syndrome Association (IRSA). Prior to study entry, potential participants are expected to be tested for a mutation in the MECP2 gene. No treatment will be administered at any time during this study. Study visits will occur every 6 months until the child is 6 years old and once a year thereafter. At each study visit, participants will be examined to assess physical characteristics of the disorder, such as motor behavior and disease severity. Additionally, participants will complete questionnaires about medical history, contact information, and quality of life. The first visit will last approximately 1.5 hours, and every subsequent visit will last approximately 1 hour.


Recruitment information / eligibility

Status Completed
Enrollment 10
Est. completion date October 2015
Est. primary completion date October 2015
Accepts healthy volunteers No
Gender All
Age group N/A and older
Eligibility Inclusion Criteria:

- Meets clinical criteria for classic or variant RTT or tests positive for an MECP2 gene mutation or a MECP2 duplication or a mutation in CDKL5 or FOXG1.

Exclusion Criteria:

- Unwilling or unable to travel to study sites for annual or biannual evaluations

Study Design


Locations

Country Name City State
United States University of Alabama at Birmingham Birmingham Alabama
United States Children's Hospital Boston Boston Massachusetts
United States Rush University Medical Center Chicago Illinois
United States University of Colorado Denver Denver Colorado
United States Greenwood Genetic Center Greenwood South Carolina
United States Baylor College of Medicine Houston Texas
United States Vanderbilt University Nashville Tennessee
United States Children's Hospital of Oakland Oakland California
United States Children's Hospital of Philadelphia Philadelphia Pennsylvania
United States University of Rochester Rochester New York
United States University of California San Diego San Diego California

Sponsors (14)

Lead Sponsor Collaborator
University of Alabama at Birmingham Baylor College of Medicine, Boston Children’s Hospital, Children's Hospital & Research Center Oakland, Children's Hospital of Philadelphia, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Greenwood Genetic Center, Rare Diseases Clinical Research Network, Rush University Medical Center, University of California, San Diego, University of Colorado, Denver, University of Rochester, University of South Florida, Vanderbilt University

Country where clinical trial is conducted

United States, 

References & Publications (26)

Bebbington A, Anderson A, Ravine D, Fyfe S, Pineda M, de Klerk N, Ben-Zeev B, Yatawara N, Percy A, Kaufmann WE, Leonard H. Investigating genotype-phenotype relationships in Rett syndrome using an international data set. Neurology. 2008 Mar 11;70(11):868-75. doi: 10.1212/01.wnl.0000304752.50773.ec. — View Citation

Bebbington A, Downs J, Percy A, Pineda M, Zeev BB, Bahi-Buisson N, Leonard H. The phenotype associated with a large deletion on MECP2. Eur J Hum Genet. 2012 Sep;20(9):921-7. doi: 10.1038/ejhg.2012.34. — View Citation

Bebbington A, Percy A, Christodoulou J, Ravine D, Ho G, Jacoby P, Anderson A, Pineda M, Ben Zeev B, Bahi-Buisson N, Smeets E, Leonard H. Updating the profile of C-terminal MECP2 deletions in Rett syndrome. J Med Genet. 2010 Apr;47(4):242-8. doi: 10.1136/j — View Citation

Chapleau CA, Lane J, Kirwin SM, Schanen C, Vinette KM, Stubbolo D, MacLeod P, Glaze DG, Motil KJ, Neul JL, Skinner SA, Kaufmann WE, Percy AK. Detection of rarely identified multiple mutations in MECP2 gene do not contribute to enhanced severity in Rett sy — View Citation

Cuddapah VA, Pillai RB, Shekar KV, Lane JB, Motil KJ, Skinner SA, Tarquinio DC, Glaze DG, McGwin G, Kaufmann WE, Percy AK, Neul JL, Olsen ML. Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with disease severity in Rett syndrome. J Med Ge — View Citation

Glaze DG, Percy AK, Skinner S, Motil KJ, Neul JL, Barrish JO, Lane JB, Geerts SP, Annese F, Graham J, McNair L, Lee HS. Epilepsy and the natural history of Rett syndrome. Neurology. 2010 Mar 16;74(11):909-12. doi: 10.1212/WNL.0b013e3181d6b852. — View Citation

Kalman LV, Tarleton JC, Percy AK, Aradhya S, Bale S, Barker SD, Bayrak-Toydemir P, Bridges C, Buller-Burckle AM, Das S, Iyer RK, Vo TD, Zvereff VV, Toji LH. Development of a genomic DNA reference material panel for Rett syndrome (MECP2-related disorders) genetic testing. J Mol Diagn. 2014 Mar;16(2):273-9. doi: 10.1016/j.jmoldx.2013.11.004. — View Citation

Killian JT, Lane JB, Cutter GR, Skinner SA, Kaufmann WE, Tarquinio DC, Glaze DG, Motil KJ, Neul JL, Percy AK. Pubertal development in Rett syndrome deviates from typical females. Pediatr Neurol. 2014 Dec;51(6):769-75. doi: 10.1016/j.pediatrneurol.2014.08. — View Citation

Kirby RS, Lane JB, Childers J, Skinner SA, Annese F, Barrish JO, Glaze DG, Macleod P, Percy AK. Longevity in Rett syndrome: analysis of the North American Database. J Pediatr. 2010 Jan;156(1):135-138.e1. doi: 10.1016/j.jpeds.2009.07.015. — View Citation

Laccone F, Jünemann I, Whatley S, Morgan R, Butler R, Huppke P, Ravine D. Large deletions of the MECP2 gene detected by gene dosage analysis in patients with Rett syndrome. Hum Mutat. 2004 Mar;23(3):234-44. Erratum in: Hum Mutat. 2004 Apr;23(4):395. — View Citation

Lane JB, Lee HS, Smith LW, Cheng P, Percy AK, Glaze DG, Neul JL, Motil KJ, Barrish JO, Skinner SA, Annese F, McNair L, Graham J, Khwaja O, Barnes K, Krischer JP. Clinical severity and quality of life in children and adolescents with Rett syndrome. Neurolo — View Citation

Leonard H, Ravikumara M, Baikie G, Naseem N, Ellaway C, Percy A, Abraham S, Geerts S, Lane J, Jones M, Bathgate K, Downs J; Telethon Institute for Child Health Research.. Assessment and management of nutrition and growth in Rett syndrome. J Pediatr Gastroenterol Nutr. 2013 Oct;57(4):451-60. doi: 10.1097/MPG.0b013e31829e0b65. — View Citation

McCauley MD, Wang T, Mike E, Herrera J, Beavers DL, Huang TW, Ward CS, Skinner S, Percy AK, Glaze DG, Wehrens XH, Neul JL. Pathogenesis of lethal cardiac arrhythmias in Mecp2 mutant mice: implication for therapy in Rett syndrome. Sci Transl Med. 2011 Dec — View Citation

Motil KJ, Barrish JO, Lane J, Geerts SP, Annese F, McNair L, Percy AK, Skinner SA, Neul JL, Glaze DG. Vitamin D deficiency is prevalent in girls and women with Rett syndrome. J Pediatr Gastroenterol Nutr. 2011 Nov;53(5):569-74. doi: 10.1097/MPG.0b013e3182 — View Citation

Motil KJ, Caeg E, Barrish JO, Geerts S, Lane JB, Percy AK, Annese F, McNair L, Skinner SA, Lee HS, Neul JL, Glaze DG. Gastrointestinal and nutritional problems occur frequently throughout life in girls and women with Rett syndrome. J Pediatr Gastroenterol — View Citation

Neul JL, Fang P, Barrish J, Lane J, Caeg EB, Smith EO, Zoghbi H, Percy A, Glaze DG. Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology. 2008 Apr 15;70(16):1313-21. doi: 10.1212/01.wnl.0000291011.54508.aa. — View Citation

Neul JL, Glaze DG, Percy AK, Feyma T, Beisang A, Dinh T, Suter B, Anagnostou E, Snape M, Horrigan J, Jones NE. Improving Treatment Trial Outcomes for Rett Syndrome: The Development of Rett-specific Anchors for the Clinical Global Impression Scale. J Child Neurol. 2015 Nov;30(13):1743-8. doi: 10.1177/0883073815579707. — View Citation

Neul JL, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, Leonard H, Bailey ME, Schanen NC, Zappella M, Renieri A, Huppke P, Percy AK; RettSearch Consortium.. Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol. 2010 — View Citation

Neul JL, Lane JB, Lee HS, Geerts S, Barrish JO, Annese F, Baggett LM, Barnes K, Skinner SA, Motil KJ, Glaze DG, Kaufmann WE, Percy AK. Developmental delay in Rett syndrome: data from the natural history study. J Neurodev Disord. 2014;6(1):20. doi: 10.1186 — View Citation

Percy A. The American history of Rett syndrome. Pediatr Neurol. 2014 Jan;50(1):1-3. doi: 10.1016/j.pediatrneurol.2013.08.018. — View Citation

Percy AK, Lee HS, Neul JL, Lane JB, Skinner SA, Geerts SP, Annese F, Graham J, McNair L, Motil KJ, Barrish JO, Glaze DG. Profiling scoliosis in Rett syndrome. Pediatr Res. 2010 Apr;67(4):435-9. doi: 10.1203/PDR.0b013e3181d0187f. — View Citation

Percy AK, Neul JL, Glaze DG, Motil KJ, Skinner SA, Khwaja O, Lee HS, Lane JB, Barrish JO, Annese F, McNair L, Graham J, Barnes K. Rett syndrome diagnostic criteria: lessons from the Natural History Study. Ann Neurol. 2010 Dec;68(6):951-5. doi: 10.1002/ana — View Citation

Percy AK. Rett syndrome: exploring the autism link. Arch Neurol. 2011 Aug;68(8):985-9. doi: 10.1001/archneurol.2011.149. Review. — View Citation

Schanen C, Houwink EJ, Dorrani N, Lane J, Everett R, Feng A, Cantor RM, Percy A. Phenotypic manifestations of MECP2 mutations in classical and atypical Rett syndrome. Am J Med Genet A. 2004 Apr 15;126A(2):129-40. — View Citation

Tarquinio DC, Hou W, Neul JL, Lane JB, Barnes KV, O'Leary HM, Bruck NM, Kaufmann WE, Motil KJ, Glaze DG, Skinner SA, Annese F, Baggett L, Barrish JO, Geerts SP, Percy AK. Age of diagnosis in Rett syndrome: patterns of recognition among diagnosticians and — View Citation

Tarquinio DC, Motil KJ, Hou W, Lee HS, Glaze DG, Skinner SA, Neul JL, Annese F, McNair L, Barrish JO, Geerts SP, Lane JB, Percy AK. Growth failure and outcome in Rett syndrome: specific growth references. Neurology. 2012 Oct 16;79(16):1653-61. doi: 10.121 — View Citation

* Note: There are 26 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Other Genetic and Physical Characteristics of Rett Syndrome, MECP2 Duplication disorder, and RTT-related conditions No other pre-specified outcome measures are planned July 31, 2019
Primary Genetic and Physical Characteristics of Rett Syndrome The primary endpoint is to determine the variables related to clinical outcome in terms of genotype and phenotype. The variables include growth, head circumference, stereotypic movements, periodic breathing, epilepsy, scoliosis, and longevity. Summative data are provided by the Clinical Severity Scale (CSS) and the Motor Behavioral Assessment (MBA) and specific neurophysiologic and neuroimaging studies in selected participants. July 31, 2019
Secondary Genetic and Physical Characteristics of Rett syndrome The principal secondary outcome measures include quality of life assessments of the participants (CHQ) and the principal caregiver (SF-36). Through July 31, 2019
See also
  Status Clinical Trial Phase
Completed NCT04988867 - An Open-Label Study of Trofinetide for the Treatment of Girls Two to Five Years of Age Who Have Rett Syndrome Phase 2/Phase 3
Recruiting NCT00069550 - Independent Studies of Dextromethorphan and of Donepezil Hydrochloride for Rett Syndrome Phase 3
Enrolling by invitation NCT06139172 - Promoting Prosocial Behavior in Syndromic Intellectual and Developmental Disabilities N/A
Not yet recruiting NCT04041713 - A Pilot Study of an Antioxidant Cocktail vs. Placebo in the Treatment of Children and Adolescents With Rett Syndrome Phase 2
Not yet recruiting NCT04014985 - Patients With RETT Syndrome N/A
Completed NCT02705677 - Biobanking of Rett Syndrome and Related Disorders
Terminated NCT02790034 - Evaluation of the Efficacy, Safety, and Tolerability of Sarizotan in Rett Syndrome With Respiratory Symptoms Phase 2/Phase 3
Enrolling by invitation NCT03655223 - Early Check: Expanded Screening in Newborns
Recruiting NCT05932589 - Neurophysiologic Biomarkers in Rett Syndrome
Recruiting NCT04463316 - GROWing Up With Rare GENEtic Syndromes
Completed NCT04776746 - Open-Label Extension Study of Trofinetide for Rett Syndrome Phase 3
Completed NCT04181723 - Study of Trofinetide for the Treatment of Girls and Women With Rett Syndrome (LAVENDER™) Phase 3
Enrolling by invitation NCT03836300 - Parent and Infant Inter(X)Action Intervention (PIXI) N/A
Completed NCT04514549 - ASSESSING EMERALD AND MC10 BIOSTAMP nPOINT BIOSENSORS FOR RETT SYNDROME
Terminated NCT02562820 - An Exploratory Trial of Ketamine for the Treatment of Rett Syndrome Phase 1
Completed NCT02738281 - Natural History of Rett Syndrome & Related Disorders
Completed NCT05687214 - Osteopathic Manipulative Treatment for Constipation in People With Rett Syndrome N/A
Recruiting NCT06199700 - Esketamine for the Treatment of Rett Syndrome Early Phase 1
Completed NCT03941444 - ANAVEX2-73 Study in Patients With Rett Syndrome Phase 3
Recruiting NCT06346106 - The Diagnostic Experience of Male Rett Syndrome