Clinical Trials Logo

Respiratory Tract Diseases clinical trials

View clinical trials related to Respiratory Tract Diseases.

Filter by:

NCT ID: NCT05852821 Completed - Clinical trials for Chronic Respiratory Disease

The 5 Repetitions Sit-to-stand Test, Carried Out Remotely Via Videoconference, in Patients With COPD: Is There a Learning Effect?

Start date: April 18, 2023
Phase: N/A
Study type: Interventional

The purpose of this clinical study is to determine if a learning effect exists when the 5STS is assessed remotely via videoconference in patients with COPD.

NCT ID: NCT05850013 Recruiting - Clinical trials for Cardiovascular Diseases

The Measurement of Vital Signs in Children by Lifelight® Software in Comparison to the Standard of Care

VISION-Jr
Start date: May 1, 2023
Phase:
Study type: Observational

A prospective basic science study for collection of training and testing data for development of Lifelight® Junior

NCT ID: NCT05849168 Recruiting - Clinical trials for Occupational Exposure

High-Intensity Interval Training to Improve Symptoms of Deployment-Related Respiratory Disease

Start date: May 8, 2023
Phase: N/A
Study type: Interventional

Some military personnel who have been exposed to burn pit emissions, desert dust, and other airborne hazards experience new respiratory symptoms after deployment. The goal of this clinical trial is to learn about exercise in veterans with new respiratory symptoms after deployment to Southwest Asia. The main questions it aims to answer are: 1. Do veterans with new respiratory symptoms after deployment have heart or lung abnormalities that contribute to difficulty exercising? 2. Does high-intensity interval training (HIIT) improve fitness and symptoms? Study participants will complete the following: 1. Study Visits 1A and 1B: Exercise test (VO2max test), echocardiogram (heart ultrasound), blood tests, questionnaires 2. Exercise program: 12 weeks of 3x/week supervised HIIT on upright stationary bicycle (~40 minutes each) and 3x/week home aerobic exercise (45 minutes each) 3. Study Visits 2A and 2B: Exercise test (VO2max test), echocardiogram (heart ultrasound), blood tests, questionnaires

NCT ID: NCT05835713 Not yet recruiting - Respiratory Disease Clinical Trials

Total Intravenous Anesthesia for Rigid Bronchoscopy Using Remimazolam

Start date: May 2023
Phase: N/A
Study type: Interventional

Rigid bronchoscopy usually requires deep general anesthesia, but the duration of the procedure is relatively short. Remimazolam, a recently developed anesthetics, showed faster recovery from anesthesia and stable hemodynamics compared to propofol, the most popular anesthetics. However, few studies have investigated the usefulness of remimazolam for rigid bronchoscopy. Therefore, the investigators compared the usefulness of propofol and remimazolam in total intravenous anesthesia for rigid bronchoscopy.

NCT ID: NCT05827302 Recruiting - Healthy Volunteers Clinical Trials

Integrating ePReBMs From Phoenix in Respiratory Diseases

Start date: October 11, 2023
Phase: N/A
Study type: Interventional

Participants with respiratory disease experience often a worsening of their condition, with increasing symptoms such as cough and shortness of breath. This worsening, often called exacerbation or flare up, impacts on the life of the participants, since they become limited in their daily activities. Healthcare is still based today on limited times for clinical appointments to perform investigations and to meet with specialists/clinicians. Very often, these evaluations do not reflect the way the disease is limiting the patient's life. Wearable devices offer the opportunity to collect data on physical activities and important clinical parameters (such as how the patient is active or just staying in bed during the day), on a daily basis. The HG Phoenix AI- based Smart Watch produced by Health Gauge, an Albertan company based in Edmonton, has the potential to measure heart rate, heart rate variability, blood pressure, pulse wave velocity, respiratory rate, temperature, arterial saturation, sleep pattern (deep, light sleep, awake time), duration and time, daily physical activities (site count and distance) and calories burnt in a simple and non-invasive fashion. Ideally, these parameters could be monitored and recorded 24 hours per 7 days per week. This study aims to demonstrate that this device can be used for a long time at home and it is comfortable to use for the participants, that it is not dangerous and, possibly, that it can help to identify exacerbations before the currently available investigations.

NCT ID: NCT05824910 Recruiting - COPD Clinical Trials

Effect of Pulmonary Telerehabilitation and Telemonitoring for Patients With Chronic Respiratory Diseases

Start date: May 20, 2024
Phase: N/A
Study type: Interventional

This research study is being conducted to evaluate the feasibility of using technology to deliver a remote home exercise program and assess the health outcomes of patients with chronic lung diseases. Specific objectives are to assess the interventions on patients: 1) Lung function, 2) Dyspnea, 3) Fatigue, 4) Exercise capacity, 5) Self-efficacy, and 6) Health-related quality of life. The investigators will also be evaluating the practicality of using videoconferencing and commercial wearable telemonitoring devices (ie. smart watches) for the implementation of the intervention in this group of patients.

NCT ID: NCT05820776 Recruiting - Clinical trials for Chronic Respiratory Disease

Tele-rehabilitation in Chronic Respiratory Disease: an Observational Cohort Study

Start date: April 6, 2023
Phase:
Study type: Observational

Pulmonary rehabilitation is a program that helps people with lung disease improve their function. It uses exercise, education, and self-management strategies to improve physical ability and quality of life. Because some people are unable to visit West Park Healthcare Centre, we established a remote supervised pulmonary rehabilitation program that patients can access via an electronic device (computer, tablet or smart phone). Regular quality assurance is necessary to ensure that the program is effective. We plan to collect and summarize the program's results. The benefit of doing so is that it allows us to make any changes or improvements that may help patients with chronic respiratory conditions.

NCT ID: NCT05819164 Not yet recruiting - Pneumonia Clinical Trials

Comparison of Multiple Oxygenation Targets With Different Oximeters in Chronic Obstructive Pulmonary Disease (COPD) and Non-COPD Patients- Impact on Oxygen Flows

Start date: May 22, 2023
Phase: N/A
Study type: Interventional

The oximeter is an instrument for monitoring patients receiving oxygen therapy. It displays pulse oxygen saturation (SpO2), which is a reflection of arterial oxygen saturation (SaO2). An accurate SpO2 value is essential for optimal management of the O2 flow delivered to patients. Several factors can influence this measurement and the choice of ventilatory support: the type of oximeter used, skin pigmentation and the oxygenation goal. The objective of our study is to evaluate the impact of the oxygenation goal and the oximeter used on oxygen flows in patients with COPD (or with hypercapnia, or at risk of hypercapnia) and in patients without COPD (in particular pneumonia, pulmonary fibrosis and other pathologies) Our hypothesis is that the SpO2 target and oximeter used will have an impact on oxygen flows and that these effects will be synergistic in these different populations.

NCT ID: NCT05805475 Recruiting - Clinical trials for Mechanical Ventilation Complication

Tracheal Suctioning With or Without Expiratory Pause Maneuver in Children

Start date: April 1, 2023
Phase: N/A
Study type: Interventional

The purpose of this study is to evaluate the efficacy of tracheal suctioning associate with expiratory pause maneuver in children on invasive mechanical ventilation.

NCT ID: NCT05797597 Recruiting - Clinical trials for AERD - Aspirin Exacerbated Respiratory Disease

Long-term Aspirin Therapy as a Predictor of Decreased Susceptibility to SARS-CoV-2 Infection in Aspirin-Exacerbated Respiratory Disease

AERD-CoV19
Start date: December 7, 2022
Phase: Phase 3
Study type: Interventional

Aspirin-exacerbated respiratory disease (AERD) is characterized by the presence of asthma, chronic rhinosinusitis with nasal polyposis (CRwNP), and acute respiratory reactions induced by aspirin and other cyclooxygenase-1 inhibitors. One of the well-established therapeutic options is aspirin desensitization followed by daily aspirin therapy. The potential mechanisms underlying the clinical benefit of this approach include the downregulation of CysLT1 receptor, inhibition of PGD2 and interleukin IL-4 via the signal transducer and activator of transcription 6, global (blood, urine) activation of type 2 (T2) inflammation as well as local (sputum) reduction of T2 asthma inflammation. Indeed, among current aspirin-treated patients with AERD (n=37), no one had severe acute respiratory syndrome coronavirus clade 2 (SARS CoV-2) infection and most importantly, none of them developed COVID19 during pandemic. WHY? Notably, patients with AERD did not have asthma and nasal polyps exacerbation on aspirin, which is in line with other studies. Respiratory infections, such as the current COVID-19 pandemic, target epithelial cells in the respiratory tract. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. Nasal and bronchial epithelium play a key role in the early phases of an immune response to respiratory viruses. Induced sputum (IS) and nasal lavage (NL) cells are likely the first immune cells to encounter SARS CoV-2 during an infection, and their reaction to the virus will have a profound impact on the outcome of the infection. Interferons (IFNs) are antiviral cytokines and among the first mediators produced upon viral infection. IFNs are divided into three groups based on their receptor usage; type I IFNs (IFN-α and IFN-β), type II IFN (IFN-γ), and type III IFNs (IFN-λ1 and 2). Both production of IFN and cellular response to IFN are critical steps for the restriction of viral dissemination. An interferon-stimulated gene (ISG) is a gene whose expression is stimulated by interferon. Specifically, type I and type III interferons are antiviral cytokines, triggering ISGs that combat viral infections. The type II interferon class only has one cytokine (IFN-γ), which has some antiviral activity. To conclude, the assessment of gene expression for interferon α1 (IFNA1), interferon β1 (IFNB1), interferon γ (IFNG), interferon λ1 and λ2 (IFNL1 and IFNL2) as well as for ACE2 and TMPRSS2 in sputum and nasal cells may shed new light on the course of this infection in patient with AERD during long term aspirin therapy.