View clinical trials related to Respiratory Insufficiency.
Filter by:Patients with coronavirus disease (COVID-19) and pneumonitis often have hypoxemic respiratory failure and a need of supplementary oxygen. Guidelines recommend controlled oxygen, for most patients with a recommended interval of SpO2 between 92 and 96 %. We aimed to determine if closed-loop control of oxygen was feasible in patients with COVID-19 and could maintain SpO2 in the specified interval.
The principal objective of the CONFIDENT trial is to assess the efficacy of two units (400-500 mL in total) of convalescent plasma, as compared to Standard of Care (SoC), to reduce day-28 mortality in patients with SARS-CoV-2 pneumonia who require mechanical ventilation.
To evaluate and compare the effect of immunoadsorption effect of A-V ECMO on course of sepsis weaning from inotropes, weaning from the ventilator, duration of ICU stays and effect on mortality rate in patients with septic shock and respiratory failure due to ARDS followed severe lung contusion.
The main purpose of this study is to identify possible predictor factor of mortality in patients affected by COVID-19 with respiratory failure needing oxygen therapy or ventilatory support. In addiction the study aims to identify factors related to: predisposition to SARS-CoV2 viral infection, different symptoms, response to therapy, predisposition to complications related to the disease. To this end, the haemodynamic parameters and all imaging reports will be evaluated and clinical and laboratory tests as well as cellular and molecular analyzes will be performed in the analyzed patients. In addition, investigations will be carried out on the profile of the alveolar or nasal microbiota and, if possible, of the metabolic products, and estimates on antibody titers.
The goal of this study is to determine what percent of severe patient-ventilator asynchrony is detected in mechanically ventilated patients in the adult ICU and to determine delays in detecting those asynchronies by the staff that were correctly identified, and whether asynchrony status recorded during intermittent assessments by respiratory therapists is representative of periods in between such assessments.
While there is only one study examining the effect of WBV on oxygen consumption and cardiovascular responses in individuals with stroke, no study has been found on the effect of WBV on respiratory capacity and flow volumes and changes in functional capacity due to effort. In this study, it was aimed to investigate whether the WBV treatment protocol determined has an effect on functional capacity and respiratory functions in individuals with stroke.
This study aims to determine if a strategy of recommending prone (on stomach) positioning of patients positive or suspected positive for coronavirus disease 2019 (COVID-19) requiring supplemental oxygen, but not mechanically ventilated, Is feasible in the inpatient setting. This study will be performed as a pragmatic pilot clinical trial to gain information relevant to the future conduct of a larger trial.
The Can nebulised HepArin Reduce morTality and time to Extubation in Patients with COVID-19 Requiring mechanical ventilation Meta-Trial (CHARTER-MT) is a prospective collaborative individual patient data analysis of randomised controlled trials and early phase studies. Individual studies are being conducted in multiple countries, including Australia, Ireland, the USA, and the UK. Mechanically ventilated patients with confirmed or strongly suspected SARS-CoV-2 infection, hypoxaemia and an acute pulmonary opacity in at least one lung quadrant on chest X-ray, will be randomised to nebulised heparin 25,000 Units every 6 hours or standard care (open label studies) or placebo (blinded placebo controlled studies) for up to 10 days while mechanically ventilated. All trials will collect a minimum core dataset. The primary outcome for the meta-trial is ventilator-free days during the first 28 days, defined as being alive and free from mechanical ventilation. Individual studies may have additional outcomes.
Background: There are no proven therapies specific for pulmonary dysfunction in patients with acute hypoxemic respiratory failure (AHRF) caused by infections (including Covid-19). The full spectrum of AHRF ranges from mild respiratory tract illness to severe pneumonia, acute respiratory distress syndrome (ARDS), multiorgan failure, and death. The efficacy of corticosteroids in AHRF and ARDS caused by infections remains controversial. Methods: This is a multicenter, randomized, controlled, open-label clinical trial testing dexamethasone in mechanically ventilated adult patients with established AHRF (including ARDS) caused by confirmed pulmonary or systemic infections, admitted in a network of Spanish ICUs. Eligible patients will be randomly assigned to receive dexamethasone: either 6 mg/d x 10 days or 20 mg/d x 5 days followed by 10 mg/d x 5 days. The primary outcome is 60-day mortality. The secondary outcome is the number of ventilator-free days at 28 days. All analyses will be done according to the intention-to-treat principle.
The main manifestation of COVID-19 is acute hypoxemic respiratory failure (AHRF). In patients with AHRF, the need for invasive mechanical ventilation is associated with high mortality. Prone positioning (PP) is a recommended strategy for patients with moderate to severe acute respiratory distress syndrome (ARDS) undergoing invasive mechanical ventilation. Early PP combined with High Flow Oxygen Therapy may benefit spontaneous breathing patients with AHRF due to COVID-19 as recently reported in Jiangsu. Our hypothesis is that early PP combined with High Flow Oxygen Therapy in patients with AHRF due to COVID-19 improves oxygenation.