Clinical Trials Logo

Respiratory Insufficiency clinical trials

View clinical trials related to Respiratory Insufficiency.

Filter by:

NCT ID: NCT05523479 Enrolling by invitation - Clinical trials for Acute Respiratory Failure

The Maximizing Extubation Outcomes Through Educational and Organizational Research (METEOR) Trial

METEOR
Start date: March 1, 2023
Phase: N/A
Study type: Interventional

The METEOR Trial will compare four implementation strategies-traditional online education, protocol-directed care, interprofessional education, and a combination of protocol-directed care and interprofessional education-to test the hypotheses that interprofessional education is superior to traditional online education as an implementation strategy in the intensive care unit (ICU) and the benefits of interprofessional education are increased when interprofessional education is paired with a clinical protocol. Additionally, the trial will also test the hypothesis that preventive post-extubation NIV for high-risk patients and preventive post-extubation HFNC for low-risk patients are both superior to current clinical practice (i.e., conventional post-extubation oxygen therapy).

NCT ID: NCT05520762 Recruiting - Respiratory Failure Clinical Trials

Hospital Airway Resuscitation Trial

HART
Start date: February 6, 2023
Phase: N/A
Study type: Interventional

The Hospital Airway Resuscitation Trial (HART) is a cluster-randomized, pragmatic trial of advanced airway management with a strategy of first choice supraglottic airway vs. first choice endotracheal intubation during in-hospital cardiac arrest.

NCT ID: NCT05513508 Recruiting - Pressure Ulcer Clinical Trials

The ROTAtional-USE of Interface STUDY

ROTA-USE
Start date: December 8, 2022
Phase: N/A
Study type: Interventional

In this trial investigators will explore if a protocolized rotational use of interfaces i.e., masks, during noninvasive positive pressure ventilation (NPPV) compared to standard care is clinically effective and cost-effective in reducing the incidence of pressure sores in patients with hypercapnic acute respiratory failure (AHRF) treated continuously i.e., for more than 24 hours, with NPPV (to avoid intubation, as alternative to invasive ventilation and after early extubation and weaning).

NCT ID: NCT05508724 Recruiting - Respiratory Failure Clinical Trials

Recruitment Manoeuvres in Critically Ill Patients

RMCIP
Start date: October 1, 2022
Phase:
Study type: Observational

Diseases of the lungs can be life-threatening. When these organs fail to adequately work, treatments to support their function are offered, often in Intensive Care Units (ICU). Respiratory failure patients may need sedation and placement of a tube in their windpipe so that a mechanical ventilator can take over their breathing until they have recovered enough to breathe again on their own. One problem that occurs in patients under mechanical ventilation is that parts of the lung tissue tend to collapse (atelectasis), reducing the amount of the lung that is able to transfer oxygen and carbon dioxide effectively and even progressing to pneumonia. To address this problem, ICU doctors often perform a procedure named 'recruitment manoeuvre', which involves briefly inflating the patient's lungs with enough pressure to try to open up the collapsed areas of lung. However, fundamental aspects of the change in the functioning of the heart and lungs that occur during and after such manoeuvre are not fully understood. In this study, funded by the University of Oxford, the investigators wish to study patients with respiratory failure who are receiving mechanical ventilation. Participants will be recruited at the ICU of the Royal Berkshire Hospital having their cardiopulmonary data collected over the course of a day. During this period, some patients will be assessed to determine whether they may benefit from a recruitment manoeuvre using a pressure-volume curve. As this assessment is not perfect, the investigators wish to study which features of this curve predict a successful recruitment. The investigators will do this by evaluating the volume of the lung before and after the recruitment manoeuvre is performed using a device named Optical Gas Analyser. A better understanding of the effects of the recruitment manoeuvre will help the investigators to determine how and when such manoeuvres should be performed in critically ill patients.

NCT ID: NCT05508308 Completed - Prematurity Clinical Trials

Automated Versus Manual Control Of Oxygen For Preterm Infants On Continuous Positive Airway Pressure In Nigeria

Start date: September 13, 2022
Phase: N/A
Study type: Interventional

One in ten babies are born preterm (<37 weeks gestation) globally. Complications of prematurity are the leading cause of death in children under 5 years, with the highest mortality rate in Sub-Saharan Africa (SSA). Low flow oxygen, and respiratory support - where an oxygen/air mixture is delivered under pressure - are life saving therapies for these babies. Bubble Continuous Positive Airway Pressure (bCPAP) is the mainstay of neonatal respiratory support in SSA. Oxygen in excess can damage the immature eyes (Retinopathy of Prematurity [ROP]) and lungs (Chronic Lung Disease) of preterm babies. Historically, in well-resourced settings, excessive oxygen administration to newborns has been associated with 'epidemics' of ROP associated blindness. Today, with increasing survival of preterm babies in SSA, and increasing access to oxygen and bCPAP, there are concerns about an emerging epidemic of ROP. Manually adjusting the amount of oxygen provided to an infant on bCPAP is difficult, and fearing the risks of hypoxaemia (low oxygen levels) busy health workers often accept hyperoxaemia (excessive oxygen levels). Some well resourced neonatal intensive care units globally have adopted Automated Oxygen Control (AOC), where a computer uses a baby's oxygen saturation by pulse oximetry (SpO2) to frequently adjust how much oxygen is provided, targetting a safe SpO2 range. This technology has never been tested in SSA, or partnered with bCPAP devices that would be more appropriate for SSA. This study aims to compare AOC coupled with a low cost and robust bCPAP device (Diamedica Baby CPAP) - OxyMate - with manual control of oxygen for preterm babies on bCPAP in two hospitals in south west Nigeria. The hypothesis is that OxyMate can significantly and safely increase the proportion of time preterm infants on bCPAP spend in safe oxygen saturation levels.

NCT ID: NCT05506267 Completed - Clinical trials for Respiratory Insufficiency

Development of a Tracheal Sound Sensor

Start date: June 1, 2020
Phase:
Study type: Observational

An observational study will be conducted in 20 hospitalized surgical patients routinely managed with opioids for anesthesia and post-operative pain control. Trachea Sound Sensor measurements and reference respiratory measurements will be recorded and analyzed to develop diagnostic algorithms that produce a risk-index score that detects/predicts progression from mild hypoventilation, to moderate hypoventilation, to severe hypoventilation due to opioids and other medications that cause respiratory depression. Our current Trachea Sound Sensor (TSS) has a wired Sony commercial microphone integrated into a commercial pediatric stethoscope, coupled to the skin surface over the trachea at the sternal notch. The Trachea Sound Sensor will measure and record the sounds of air moving within the proximal trachea during inhalation and exhalation. The microphone signal will be converted into an accurate measurement of the patient's respiratory rate and tidal volume (during inhalation & exhalation) over time, to determine the minute ventilation trend, breathing patterns, apnea episodes, and degree of snoring (due to partial upper airway obstruction). A commercial respiratory facemask and two pneumotachs (gas flow sensors) will also be used to accurately and continuously measure the patient's respiratory rate and tidal volume (during inhalation & exhalation) to determine the minute ventilation trend, breathing patterns, and apnea episodes. TSS data and reference respiratory data will be collected prior to surgery with the patient breathing normally (baseline), in the Operating Room (OR) during the induction and maintenance of anesthesia, in the Post Anesthesia Care Unit (PACU), and on the general nursing floors of Thomas Jefferson University Hospital (TJUH). The sounds of air flowing through the proximal trachea will be correlated with the reference breathing measurements using signal processing methods to optimize the measurement accuracy of RR, TV, breathing pattern, apnea episodes, and degree of snoring. A commercial accelerometer may be coupled to the skin surface of the neck (with tape) to measure body position and activity level. The TSS and vital sign trend data will be analyzed to produce a Risk-Index Score every 30 seconds with alerts and alarms that warn the patient and caregivers about progressive Opioid Induced Respiratory Depression (OIRD).

NCT ID: NCT05500833 Recruiting - Clinical trials for Dyspnea and Respiratory Insufficiency in Children

Multidimensional Characterization of Dyspnea in Children

DYSPED
Start date: January 26, 2023
Phase:
Study type: Observational

There is no specific tool existing to describe dyspnea in children in a multidimensional way. It has been shown in adult studies that multidimensional dyspnea evaluation scales are well correlated to quality of life and respiratory function impairments. The investigators hypothesis is that using multidimensional dyspnea evaluation scales could allow for a more systematic and precise evaluation of this symptom in children, thus improving management and follow-up of patients presenting with acute (asthma attack, infectious diseases) and chronic (cystic fibrosis, primary ciliary diskynesia, neuromuscular diseases) respiratory insufficiency.

NCT ID: NCT05499039 Not yet recruiting - Clinical trials for Acute Hypoxemic Respiratory Failure

High Flow Nasal Cannula Versus Non-Invasive (NIV)in Both Hypoxemic and Hypercapnic Respiratory Failure.

Highflow
Start date: October 10, 2022
Phase: N/A
Study type: Interventional

high flow nasal cannula (HFNC) oxygen therapy utilizes an air oxygen blend allowing from 21 % to 1 00% FiO2 delivery and generates up to 60 L/min flow rates The gas is heated and humidified through an active heated humidifier and delivered via a single limb heated inspiratory circuit (to avoid heat loss and condensation) to the patient through a large diameter nasal cannula Theoretically, HFNC offers significant advantages in oxygenation and ventilation over COT. Constant high flow oxygen delivery provides steady FiO2 and decreases oxygen dilution. It also washes out physiologic dead space and generates positive end expiration pressure (PEEP) that augments ventilation The heated humidification facilitates secretion clearance, decreases bronchospasm, and maintains mucosal integrity. This study aims to evaluate the effectiveness of HFNC compared to NIMV in management of Acute hypoxemic and acute hypercapneic respiratory failure

NCT ID: NCT05497986 Not yet recruiting - Clinical trials for Hypercapnic Respiratory Failure

Conventional Low Flow Oxygenation Versus High Flow Nasal Cannula in Hypercapnic Respiratory Failure

Start date: October 2022
Phase: N/A
Study type: Interventional

Current evidence suggests a mechanistic and physiological rationale for the use of high flow nasal cannula (HFNC) in acute respiratory hypoxemic failure (AHRF) based on physiological studies in airway models, healthy volunteers and patients with Chronic Obstructive Respiratory Disease (COPD). This is supported by observational studies in patients with AHRF with reductions in a range of respiratory and other physiological parameters. Observational studies also suggest similar intubation rates and lower failure rates with HFNC when compared to non-invasive ventilation (NIV) with improved patient acceptance and tolerance for HFNC. The role of HFNC is less clear in acute hypercapnic respiratory failure. Although non-invasive ventilation is the recommended treatment, it is associated with discomfort, and a significant proportion (up to 25% in some reports) cannot tolerate non-invasive ventilation. Observational reports and limited data from randomized controlled trials suggests that HFNC is effective in treating patients with hypercapnic respiratory failure. We designed this trial to assess whether early application of HFNC in patients with non-severe hypercapnic respiratory failure can correct barometric abnormalities, and prevent progression to non-invasive ventilation or tracheal intubation and mechanical ventilation.

NCT ID: NCT05495477 Recruiting - Respiratory Failure Clinical Trials

Effects of NIV and CPAP on Ventilation Distribution, Measured by EIT, During Deep Sedation in Paediatric Patients

NIVEIT-ped
Start date: April 20, 2021
Phase: N/A
Study type: Interventional

In patients undergoing spontaneous breathing (SB) deep sedation there is a re-distribution of ventilation towards lungs non-dependant areas (ventral areas in supine position). Non-invasive ventilation (NIV), offering positive pressure, should favour a better ventilation of dependant areas (dorsal areas in supine position), making ventilation more homogeneous and increasing functional residual capacity. Electrical impedance tomography (EIT) is a non-invasive, non-operator dependent, bedside, radiations-free diagnostic tool, feasible in paediatric patients and repeatable; it allows to study ventilation distribution, and it can measure and calculate also parameters that are related to the homogeneity of ventilation and the response to certain therapeutic maneuvers, such as anaesthesia or PEEP-application. Uses of EIT in paediatric age are described in literature, but it has never been described as being used in Non-Operating Room Anaesthesia, nor in other cases of SB deep sedation. In addition, the impact of NIV on the distribution of ventilation in healthy paediatric patients undergoing deep sedation has never been described.