View clinical trials related to Respiratory Insufficiency.
Filter by:Patients admitted to the ICU with severe hypoxemia are at high risk for mortality. Few therapies have been proven to improve patient outcomes or duration of mechanical ventilation e.g. low tidal volume ventilation, prone positioning, and a fluid-restrictive strategy. Prone positioning is a technique used to help patients with acute respiratory distress syndrome breathe better. There is high degree of uncertainty on its effects on clinical outcomes in non-intubated patients with acute hypoxemia and larger studies are needed.
A randomized, double-Blind, placebo-controlled trial aimed to investigate the safety and efficacy of sivelestat on treating adult patients with COVID-19-related acute respiratory distress syndrome (ARDS)
Awake prone positioning has been reported to improve oxygenation for patients with COVID-19. Awake timed and repositioning is a novel method to improve patients' compliance and prolong the prone time. This study aims to explore the impact of timed prone and repositioning on the intubation rate and prognosis of COVID-19 patients with hypoxic respiratory failure.
In intensive care units (ICUs), around 20% of patients experience respiratory failure after planned extubation. Nearly 40-50% of them eventually require reintubation with subsequently high mortality rates reaching 30-40%. NIV used as rescue therapy to treat post-extubation respiratory failure could increase the risk of death. However, NIV may avoid reintubation in a number of cases, and recent large-scale clinical trials on extubation have shown that around 40 to 50% of patients with post-extubation respiratory failure are actually treated with NIV. Whereas high-flow nasal oxygen has never been specifically studied for management of post-extubation respiratory failure, this respiratory support could also in this setting constitute an alternative to standard oxygen or NIV. Given the best noninvasive respiratory support strategy in patients with post-extubation respiratory failure remains unknown, we have decided to assess whether NIV alternating with high-flow nasal oxygen as compared to high-flow nasal oxygen alone may decrease mortality of patients in ICUs with post-extubation respiratory failure.
The current practice of oxygenation and/or ventilation supports in patients undergoing Fiberoptic Bronchoscopy is very heterogeneous among studies published in the literature; in addition, clear outcomes advantages of one strategy over another currently lack. The goal of this observational study is to describe the current practice of oxygenation and/or ventilation supports in patients undergoing Fiberoptic Bronchoscopy (FOB), stratified by baseline respiratory condition, co-morbidities, type of procedure and hospital settings. Investigators will enroll all adult patients undergoing any fiberoptic bronchoscopy in any clinical settings (from outpatients to critically ill patients). No specific exclusion criteria are indicated for enrollment in this study. Investigators will record the following data: - Patient's baseline data. - Type of FOB procedure: toilet bronchoscopy (for secretions, blood, mucus plugs removal), broncho-aspirate (BAS), bronchoalveolar lavage (BAL), brushing for cytology, biopsy, endobronchial ultrasound (EBUS). The type and size of bronchoscope (with or without an internal/external camera) and the time of the procedure will be also recorded. - Type of supportive strategy: no support, Standard Oxygen Therapy, High Flow Nasal Cannula, Continuous Positive Airway Pressure and or non invasive ventilation trough mask or helmet, invasive mechanical ventilation. - Sedation - Intra-procedural vital parameters - Occurrence of adverse events: desaturation (i.e. SpO2< 90% for at least 10 seconds), severe desaturation (i.e. SpO2< 80%), need for procedure interruption, hypotensive (systolic blood pressure <90 mmHg) or hypertensive (systolic blood pressure >140 mmHg) events, new onset of cardiac arrhythmias (specify the rhythm) or myocardial ischemia or electrocardiographic ST-alterations, neurological events (i.e. severe sensorium depression, psychomotor agitation). - Post-procedural vital parameters (15 minutes after the procedure). - Clinical outcomes: need for support escalation, need for admission to ward (for outpatient) or ICU (for outpatients and ward-admitted patient).
The goal of this study is to design a pilot trial evaluating the safety, feasibility, pharmacokinetic modeling, and physiological effects of a volatile anesthetic, sevoflurane, directly administered in extracorporeal membrane oxygenation machines.
This study is being conducted to evaluate if wearing a non-invasive breathing support device over the chest/abdomen improves markers of breathing in patients with lung injury requiring high-flow oxygen. The breathing support device consists of a plastic shell that sits over the chest and abdomen and connects to a vacuum that helps the chest expand with breathing. This breathing support is known as continuous negative external pressure (CNEP). Study findings will help determine if this breathing support device might be useful for patients with acute hypoxemic respiratory failure (AHRF).
Arterial blood sampling is needed to monitor carbon dioxide and PH but is often painful. The aim of this study is to determine whether continuous carbon dioxide monitoring with a skin probe reduces the need for arterial blood sampling by at least 30%. The investigators will also study the safety and effectiveness of skin probe monitoring to manage non-invasive ventilation (NIV).
In this study patients who are intubated and on ventilator for more than 24h will be ventilated at three different level of support in Pressure Support and Neural Pressure Support to study patient-ventilator synchrony and muscle unloading.
The aim of the study is to asses safety and indications and contraindications for performing bronchofiberocopy (FB) with respiratory support methods, i.e. non-invasive ventilation (NIV) and high flow nasal oxygen therapy (HFNO). Additionally, researchers want to determine how using these methods could avoid the risk of most common complications such as: hypoxemia-related events, decompensation of chronic respiratory failure, worsening of gas exchange, hemodynamic instability.