Clinical Trials Logo

Clinical Trial Summary

The study aims to assess the basic functionality of a newly designed CPAP machine with reusable circuits to existing machines with disposable circuits, for treatment of newborn infants diagnosed with respiratory distress syndrome. The assessment will compare a comprehensive list of physiological parameters over the first 72 hours of treatment, and will also monitor rates of side effects and adverse events. The null hypothesis is that infants treated on the two categories of machine (reusable vs disposable) will not differ in relation to key physiological parameters by more than 0.63 standard deviations.


Clinical Trial Description

One of the commonest sources of serious newborn morbidity and mortality is difficulty with breathing. When this occurs, three main types of supportive therapy are available to increase the provision of oxygen to cells: a) passive provision of oxygen-enriched gases (i.e., higher than the 21% O2 found in the earth's atmosphere) through tubes in the nostrils, or by putting a hood over the baby's head and enriching the gases under that hood; b) provision of room air or oxygen-enriched gasses under pressure, frequently performed using a method called continuous positive airway pressure [CPAP] therapy; and/or c) by using a machine that is able to breath on behalf of the baby, most commonly referred to as mechanical ventilation [MV].

Passive therapy is the least invasive method but is also of limited benefit, particularly for infants born preterm. CPAP is more effective than passive methods because continuous distending pressure to the lungs allows better oxygen exchange; however, the distending pressure increases the risk of damage to the lung. MV is the only method that can be used on babies without a neurological impulse to breath, but the mechanical breathing action can damage the lungs, and MV is usually provided through a tube inserted into the lungs which increases the risk of lung infection; MV machines are also significantly more expensive than CPAP machines.

In high resource settings, CPAP is now the preferred method of providing oxygen for infants where passive therapy is insufficient, because of the lower infection risk, lower risk of lung damage, and relative ease of clinical care. CPAP is increasingly recommended for low resource settings, but the CPAP machines used in high resource settings are too expensive for low resource settings due to high-priced consumables ($US50-200/baby), and are usually unusable in low resource settings because they require 'medical air' (clean air in a cylinder, or through a piped wall system) with which to blend 100% oxygen. Low cost 'indigenous' machines ('jury-rigged' by hospital staff) have also been developed, but these do not provide the heated, humidified and blended gasses, that are recommended for CPAP.

This study seeks to evaluate a novel CPAP machine that provides heated, humidified, blended gasses, in line with recommendations for high-resource settings, while massively reducing costs by including re-usable tube sets and humidifiers that can be autoclaved, and with an on-board air-compressor to allow use in a broader range of clinical settings. By reducing the cost per CPAP treatment, such a machine can dramatically increase the number of hospitals in low resource settings that can provide high quality CPAP treatment. ;


Study Design


Related Conditions & MeSH terms

  • Respiratory Distress Syndrome, Adult
  • Respiratory Distress Syndrome, Newborn

NCT number NCT03121612
Study type Interventional
Source Medical Technology Transfer and Services Hong Kong Ltd
Contact
Status Terminated
Phase N/A
Start date August 1, 2017
Completion date October 15, 2018

See also
  Status Clinical Trial Phase
Recruiting NCT01206946 - Efficacy of Antenatal Steroids in Reducing Respiratory Morbidities in Late Preterm Infants Phase 2
Completed NCT00739115 - The Use of Heliox Via Nasal CPAP to Prevent Early CPAP Failure in Premature Infants: A Feasibility Study N/A
Terminated NCT00486395 - Will CPAP Reduce Length Of Respiratory Support In Premature Infants? Phase 3
Completed NCT01242462 - Feasibility of Mid-frequency Ventilation in Newborns With RDS: Randomized Crossover Pilot Trial Phase 1/Phase 2
Enrolling by invitation NCT02050971 - Autologous Cord Blood Infusion for the Prevention and Treatment of Prematurity Complications In Preterm Neonates Phase 1
Completed NCT00486850 - Synchronized Intermittent Mandatory Ventilation (SIMV) Versus Nasal Intermittent Positive Pressure Ventilation (NIPPV) In Preterm Infants With Respiratory Distress Phase 4
Terminated NCT00005776 - Inhaled Nitric Oxide Study for Respiratory Failure in Newborns Phase 3
Completed NCT04500353 - Routine Or Selective Application of a Face Mask for Preterm Infants at Birth: the ROSA Trial N/A
Completed NCT05796128 - NIPPV vs.nCPAP During LISA Procedure N/A
Withdrawn NCT02835209 - Positioning During SBT in NICU Infants N/A
Terminated NCT01467076 - Inhaled Prostaglandin E1 (IPGE1) for Hypoxemic Respiratory Failure (NHRF) Phase 2
Completed NCT00556738 - Intrapulmonary Percussive Ventilation (IPV) Versus Nasal Continuous Positive Airway Pressure Ventilation (nCPAP) in Transient Respiratory Distress of the Newborn N/A
Completed NCT00828243 - Genetic Regulation of Surfactant Deficiency
Not yet recruiting NCT05594030 - Thoracic Fluid Content by Electric Bioimpedance Versus Lung Ultrasound in Preterm Neonates With Respiratory Distress
Completed NCT02332304 - Amniotic Fluid Optical Density Determination as a Test for Assessment of Fetal Lung Maturity. Phase 3
Withdrawn NCT00598429 - Inhaled PGE1 in Neonatal Hypoxemic Respiratory Failure Phase 2
Completed NCT04137783 - ABCA3 Gene and RDS in Late Preterm and Term Infants
Completed NCT01941524 - Brain Oxygenation and Function of Preterm Newborns During Administration of Two Different Surfactant Preparations Phase 4
Completed NCT01102543 - Observational Study on the Prophylactic Use of Curosurf in Neonatal Respiratory Distress Syndrome (RDS) N/A
Completed NCT00501982 - Efficacy of Combining Prophylactic Curosurf With Early Nasal CPAP in Delivery Room: the Curpap Study Phase 4